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Title 
Developing Operational and Policy Insights into Next Generation Vehicle Needs Based on an Integrated 
Understanding of the Transportation and Energy System of Systems 

Introduction 
Electric vehicles (EVs) have received considerable attention in the recent past with the promise of 
achieving reduced petroleum dependency, enhanced energy efficiency, and improved environmental 
sustainability. EVs, especially battery electric vehicles (BEVs), have different characteristics and concerns 
as compared to internal combustion engine vehicles (ICEVs) such as range limitation, range anxiety, long 
battery recharging time, lower fuel efficient speed, and recuperation of energy lost during the 
deceleration phase if equipped with regenerative braking system (RBS). Hence, it is expected that BEV and 
ICEV drivers will have different travel behaviors, e.g. route choice. With increasing the market penetration 
of BEVs, this difference in travel behavior will have implications on the network performance, especially 
in terms of system travel time and overall energy consumption. This study develops a multi-class dynamic 
user equilibrium (MCDUE) model to evaluate the traffic network performance under equilibrium 
conditions for mixed traffic flow with BEVs and ICEVs by accounting for the difference in their route choice 
behavior. 

Further, the driving range of an EV decreases due to battery degradation with use and time. This can make 
EVs less attractive for consumers as battery replacement is expensive. This study develops a multi-
paradigm modeling framework integrating microscopic traffic simulation model, EV energy consumption 
model, battery circuit model, and semi-empirical battery degradation model to study the impacts of EV 
travel patterns on battery lifespan. 

Findings 
The results from MCDUE model provide useful insights related to the BEV route choice behavior and its 
impact on network performance. As the battery state-of-charge consumption of BEVs is lower at slower 
speeds, BEVs tend to select routes with lower speeds to reduce electricity costs and avoid range anxiety. 
Moreover, the electricity regeneration during braking due to RBS makes it economical for BEVs to select 
routes with stop-and-go traffic conditions. Such potential unconventional route choice behavior of BEVs 
can reduce congestion on routes with higher speeds, e.g. freeways, while increasing congestion on routes 
with lower speeds, e.g. arterial routes. This can potentially lead to improvement in network performance 
and move the traffic network towards system optimal conditions in terms of travel time. The results also 



NEXTRANS Project No 019PY01Technical Summary - Page 2 

 

indicate that with increase in traffic congestion, the route choice behavior of EVs become similar to ICEVs 
as the difference in speed between freeways and arterial routes decreases. 

This study quantifies the impacts of temperature, vehicle travel patterns, and driving behavior on battery 
lifespan for a large EV population. The results illustrate that at lower temperatures, the variation in battery 
lifespans of a large population of EVs is higher due to differences in vehicle travel patterns and driving 
behavior. The battery lifespan decreases as the average daily distance traveled increases. The results also 
indicate that the battery lifespan is lower for the drivers with high speed variation during driving. The 
variation in battery lifespan decreases with increase in temperature. 

Recommendations 
The research insights of this project can be leveraged by traffic operators, energy operators, vehicle 
owners, policymakers and vehicle manufacturers. First, traffic operators need to incorporate the 
difference in route choice behavior of BEVs and ICEVs in devising control strategies to enhance the traffic 
network performance without exclusively using just monetary instruments like tolling or congestion 
pricing, at least under mixed traffic environments. Second, the insights related to energy consumption 
can aid energy operators to plan for infrastructure investments to support the increasing market 
penetration of electric vehicles. Third, vehicle owners should assess the lifetime cost of EV ownership 
including maintenance cost, insurance cost and battery resale value, based on their travel needs and 
geographic location. Finally, policymakers and vehicle manufacturers should factor regional temperature 
conditions in designing strategies, e.g. tax credits and battery warranty, to promote EV adoption. Since 
the impacts of vehicle travel patterns and driving behavior are considerable at lower temperatures, these 
need to be factored by vehicle manufacturers in designing of warranty strategies for colder regions. 
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CHAPTER 1. INTRODUCTION 

1.1 Background and motivation 

The transportation sector is an important component of energy consumption. It 

accounts for about 70% of the total oil consumption in the U.S. (U.S. EIA, 2012; U.S. EPA, 

2015). Internal combustion engine vehicles (ICEVs)  use liquid fossil fuels as their energy 

sources, and have become the largest contributors to urban air pollution (Funk and Rabl, 

1999). In 2013, greenhouse gas emissions from transportation sector accounted for about 

27% of total U.S. greenhouse gas emissions, making it the second largest contributor of 

greenhouse gas emissions in the U.S. after the electricity sector (U.S. EPA, 2015). Electric 

vehicles have received considerable attention in the recent past with the promise of 

achieving reduced petroleum dependency, enhanced energy efficiency, and improved 

environmental sustainability. An electric vehicle (EV) uses a battery-powered electric 

motor for propulsion unlike an ICEV which is powered by burning gasoline or diesel. 

Although the environmental sustainability of EVs is debated for the source of electricity 

generated for recharging the EV’s battery, they have a clear advantage over ICEVs due to 

their energy efficiency. Since electricity can be generated from renewable energy, EVs 

have the potential to significantly reduce emissions from transportation sectors as the 

electricity fuel mix evolves (EPRI, 2007; Wang, 1999; Weiller, 2011). According to the 

U.S. Department of Energy (USDOE, 2014), it is estimated that only about 17–21% of the 

energy stored in the gas tank of an ICEV is converted to power at the wheels because for 

example, the combustion engine alone loses 62.4% of the energy from fuel as heat. By 

contrast, EVs convert about 59–62% of the electrical energy from the grid to power at the 

wheels. EVs can be equipped with regenerative braking system that can further enhance 

overall fuel efficiency and reduce emissions (Clarke et al., 2010).   

However, the greater adoption of EV still faces several substantial challenges. 

These include range anxiety (that is, the fear of running out of battery charge before 

completing the trip) (Tate et al., 2008), long battery recharging time (Morrow et al., 2008), 
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scarce availability of charging infrastructure (Lin and Greene, 2011; Miralinaghi et al., 

2017, 2016; Pearre et al., 2011), the potential impact on power grid stability (Kang and 

Recker, 2009), higher vehicle prices (Rezvani et al., 2015), and concerns about battery such 

as reduction in lifespan due to degradation and resale value for second use (Neubauer et 

al., 2012; Saxena et al., 2015).  Thus, a realistic framework to analyze the impacts of EVs 

based on an integrated understanding of the transportation and energy system of systems 

is essential for developing operational and policy insights. 

1.2 Research objectivess 

The research objectives are the following: 

• Develop a multi-class dynamic user equilibrium (MCDUE) model to evaluate the 

network performance under equilibrium conditions for mixed traffic flow with EVs 

and ICEVs by accounting for the difference in their route choice behavior. 

• Develop a multi-paradigm modeling framework to quantify EV battery lifespan for 

a large population of EVs by integrating microscopic traffic simulation model, EV 

energy consumption model, battery circuit model, and semi-empirical battery 

degradation model. 

1.3 Organization of the research 

The remainder of the report is organized as follows. CHAPTER 2 presents the 

conceptual foundation for the proposed study and reviews related literature. CHAPTER 3 

presents a framework to study the routing aspects of EV drivers and their effects on the 

network performance. CHAPTER 4 presents a multi-paradigm modeling framework to 

quantify the impacts of EV travel patterns on battery lifespan. CHAPTER 5 summarizes 

the research findings and insights, and discusses future research directions.  
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CHAPTER 2. CONCEPTUAL FOUNDATION AND LITERATURE REVIEW 

This chapter introduces the conceptual foundation of the study and literature review 

on existing tools for quantifying the impacts of EVs on transportation network 

performance, and the impacts of EV travel patterns on battery lifespan. 

2.1 Electric vehicle characteristics 

There are two main types of EVs in the market: plug-in hybrid electric vehicle 

(PHEV) and battery electric vehicle (BEV). PHEVs are equipped with both internal 

combustion engine and electric motor, and BEVs are equipped with only the electric motor. 

As a PHEV uses two drive-trains, typically its operating cost is higher than that of a BEV 

which uses single drive-train. There are unique characteristics currently associated with 

BEVs, including limited battery capacity and long recharging time that can be limiting for 

travel compared to ICEVs. Given the current battery technologies, a BEV typically has a 

driving range of around 80 – 100 miles with a full charge, depending on the vehicle type 

and battery size. Some premium BEVs, such Tesla Model S, have a higher range of about 

250 – 350 miles with the advancement of battery technology which is expected to improve 

further; however, they are significantly more expensive compared to typical EVs. The 

limited driving range of BEVs imposes an issue, known as the range anxiety, that is, the 

driver concerns that the vehicle will run out of battery power before reaching the 

destination (Tate et al., 2008). This issue is especially limiting for long trips where the 

travel distance is close to or beyond the driving range (Mock et al., 2010; Yu et al., 2011). 

This study focuses on BEVs rather than PHEVs as the purpose of this study is to capture 

range anxiety which is not applicable to PHEVs. A PHEV is similar to a BEV when 

operating on battery (if range anxiety is not a concern) and an ICEV when operating on 

gasoline or diesel. 

Typically, a BEV spends 6-8 hours (slow charging) to get fully charged, depending 

on the electrical charging equipment, charging schemes, and battery capacity (Botsford and 
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Szczepanek, 2009). Fast charging technology is available, with 10 minutes charging for a 

range up to 100 miles. However, it requires special equipment in the power connector and 

is sparsely deployed in the public infrastructure. Even the “quick charge” facility available 

at public charging stations can take around 30 minutes to charge the battery up to 80% 

(USDOE, 2016). Furthermore, fast charging, including quick charging, can deteriorate the 

battery health and is not advisable on a regular basis (Rezvanizaniani et al., 2014). Another 

alternative to en route charging for long distance travel is battery swapping stations (BSS) 

where a depleted battery pack is quickly swapped with a recharged one. The success of 

BSS requires car manufacturers to follow certain battery standards, and even then can entail 

battery stock problem, especially in urban areas. These technological and logistical 

challenges make BSS impractical to implement (Senart et al., 2010). Therefore, BEV 

drivers currently, and in the near future, are expected to charge their vehicles through 

home-based overnight charging or workplace-based charging mechanisms most of the 

time. 

2.2 Electric vehicle energy consumption models 

In the context of EV energy consumption computation, electrochemical theory 

based models require battery-level data like voltage and current while the models using 

driving parameters such as speed and acceleration generally use basic principles of physics 

to estimate power consumption. Chan (2000) provides an overview of various 

electrochemical process based methods. Plett (2004) proposes an extended Kalman-

Filtering based method for the battery management system of Lithium-Lead based hybrid 

EV battery packs. While these methods are essential for battery SOC estimation, it is not 

practical to use them for the traffic-related perspective here due to their battery data 

requirements. Battery SOC per unit time can be computed by ADVISOR, a tool developed 

by the National Renewable Energy Laboratory (NREL) to analyze vehicle performance 

and fuel economy (Johnson, 2002; Wipke et al., 1999). It uses basic physics and model 

component performance to replicate the vehicle drivetrain process (NREL, 2013). Maia et 

al. (2011) use a simulator called Simulation of Urban Mobility (SUMO) to simulate the 



10 
 

energy consumption of EVs. Wu et al. (2015) use test vehicles installed with an in-vehicle 

data collection system to measure and analyze EV energy consumption. Tanaka et al. 

(2008) perform a similar study to determine EV power consumption under different speed 

profiles. Yao et al. (2013) propose a SOC estimation method based on dynamometer test 

data. Van Haaren (2012) analytically compute energy power consumption for EVs and 

estimate the parameters through curve-fitting based on the Tesla Roadster data published 

by Straubel (2008). This study uses the battery model proposed by Van Haaren (2012) due 

to its computational efficiency and capability to capture battery recuperation. 

2.3 Electric vehicle energy-efficient routing 

Related to energy-efficient routing, Sachenbacher et al. (2011) introduces the 

problem of finding the most energy-efficient path for EVs with recuperation in a graph-

theoretical context. Artmeier et al. (2010) and Storandt (2012) propose revised shortest-

path algorithms to address energy-optimal routing. They formulate energy-efficient routing 

in the presence of rechargeable batteries as a special case of the constrained shortest path 

problem and propose adaptations of existing shortest path algorithms. Ichimori et al. (1983) 

and Adler et al. (2014) address the EV shortest-walk problem to determine the route from 

an origin to a destination with minimum detouring; this route may include cycles for 

detouring to recharge batteries. Adler and Mirchandani (2014) further study the online 

routing and scheduling of EVs that involve wait time as well as a reservation scheme to 

have a fully-charged battery in place due to limited capacity at a battery swap station. 

Schneider et al. (2014) investigate the EV routing problem with custom time windows and 

battery-charging stations in a dynamic context. However, they consider the travel time to 

be independent of flow in the routing model. 

2.4 Electric vehicle traffic assignment models 

In the context of EV traffic assignment, Jiang et al. (2012) formulate a multi-class 

path constrained traffic assignment model for mixed traffic flow with BEVs and ICEVs. In 

their model, BEV is a vehicle class with trip length no more than the driving range of full 
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battery capacity, and thus BEVs’ equilibrium routes are restricted to the set of distance-

constrained paths. However, they do not consider energy recuperation using RBS. Later, 

Jiang and Xie (2014) extend their model to the combined mode choice and assignment 

framework by assuming different travel cost functions for BEVs and ICEVs. He et al. 

(2014) study the network equilibrium of BEVs with recharging capabilities. They propose 

to minimize the traditional user equilibrium term plus the recharging time. The energy 

consumption is used to compute the set of usable paths. However, they consider travel time 

(including recharging time) minimization as the single decision criterion for route choice, 

and neglect the energy consumption factor in the cost function. In addition, their models 

focus on static traffic equilibrium rather than dynamic user equilibrium (DUE). Most traffic 

assignment related studies assume that the electricity consumption is simply a linear 

function of the distance traveled and the route travel time (He et al., 2014; Jiang and Xie, 

2014). However, energy consumption is closely related to travel speed, terrain, battery 

SOC, temperature, etc. For example, Figure 1 shows the energy consumption rate versus 

speed for the Tesla Roadster as presented by Van Haaren (2012). 

 
Figure 1 Tesla Roadster Energy Consumption (Van Haaren, 2012) 
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2.5 Charging station facility location problem 

Several studies have investigated the facility location problem of charging stations 

(Chen et al., 2013; He et al., 2013; Hess et al., 2012; Xi et al., 2013) and battery-swapping 

stations (Mak et al., 2013) where depleted batteries can be recharged or exchanged en route 

on long trips. Nie and Ghamami (2013) analyze the selection of battery size and charging 

capacity to meet a given level of service such that social cost is minimized. He et al. (2013) 

investigate the charging station location problem for PHEVs. The assumption is that 

PHEVs are always charged at trip destinations, and that travelers jointly select routes and 

destinations based upon charging prices at destinations. Note that range limitation is not an 

issue just for BEVs, but also applies to vehicles with alternative fuels which need to find 

refueling facilities to successfully complete the trip. Several studies have addressed 

refueling facility location for alternative fuel based trips (Kuby and Lim, 2005; Upchurch 

et al., 2009; Wang and Lin, 2009). 

2.6 Electric vehicle battery degradation and life estimation models 

Two types of battery degradation/aging mechanisms are significant: during storage 

(calendar aging) and during use (cycle aging). Calendar aging is due to side reactions 

resulting from thermodynamic instability of active materials, while cycle aging results 

from kinetic effects, such as structural disordering, or concentration gradients. In past 

work, the total aging effect is considered as the summation of calendar aging and cycle 

aging, but interactions may occur (Broussely et al., 2005, 2001; Wright et al., 2002). 

Battery aging mainly happens at the two electrodes: anode (e.g. graphite) and cathode (e.g. 

lithium metal oxide). Aging mechanisms occurring at anodes and cathodes are significantly 

different. Most researchers believe that changes to the Solid Electrolyte Interphase (SEI) 

due to reactions of the anode with the electrolyte are the major source for aging at the anode 

(Aurbach et al., 2002; Vetter et al., 2005). Unlike the anode, the cathode can be made using 

different types of metal oxide materials. Different materials have quite different effects on 

battery life, and the mechanisms of capacity fade at the cathode are not completely 
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understood. Moreover, battery aging is induced by various processes and their interactions, 

and most of them cannot be studied independently (Morrow et al., 2008). Due to the 

complexity of the Li-ion battery system, some researchers have created semi-empirical 

battery life models for specific Li-ion battery chemistries based on experimental data (Lee 

et al., 2015; Purewal et al., 2014; Wang et al., 2014, 2011). Thomas et al. (2008) built a 

degradation model and an error model using a statistical method based on experimental 

data. 

Using the aforementioned battery life estimation models, some researchers have 

studied the battery lifespan for EVs/PHEVs (plug-in hybrid electric vehicles). For example, 

Guenther et al. (2013) studied the EV battery lifespan for different charging behaviors and 

three speed profiles. Similarly, other studies (Marano et al., 2009) applied speed profiles 

from standard driving cycles, such as Urban Dynamometer Driving Schedule (UDDS), by 

either repetition or combination. However, the impacts of realistic vehicle travel patterns 

with detailed speed profiles on battery lifespans for a large population of EVs have not 

been studied. As shown in our study results, vehicle travel patterns and driving behavior 

can have significant impacts on battery lifespan. Using speed profiles from standard driving 

cycles may be useful under a variety of considerations, but they fail to represent the 

variation in driving behavior and traffic conditions. Hence, using realistic speed profiles 

that can capture the effects of traffic conditions will enhance the estimation of EV battery 

lifespan. 
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CHAPTER 3. ROUTING ASPECTS OF ELECTRIC VEHICLE DRIVERS AND 
THEIR EFFECTS ON NETWORK PERFORMANCE 

The market share of EVs has increased significantly in recent years (Mock and 

Yang, 2014) and is likely to increase further in future, due to multiple incentives such as 

government subsidies, advancement in battery technology and public acceptance of EVs. 

Shepherd et al. (2012) investigate the effect of multiple factors such as subsidy, average 

vehicle life and emission rates on the market penetration of BEVs. Becker et al. (2009) 

predict that EVs, including both PHEVs and BEVs, could comprise 24% of the light-

vehicle fleet in USA by 2030. The increase in the market penetration of EVs, especially 

BEVs, will impact the traffic stream, which may imply new driving and route choice 

imperatives. BEVs are typically equipped with regenerative braking system (RBS) that can 

recuperate a part of the kinetic energy lost during the deceleration phase to recharge the 

battery. This is where braking energy that would otherwise be dissipated as heat is captured 

and restored in the battery. This can increase the driving range of a BEV. Studies show that 

in typical urban areas, the recuperation could increase range by about 20%, and often more 

in hilly areas (Artmeier et al., 2010). Due to the long battery recharging time, en route 

recharging is usually not an attractive option for BEVs currently, and thus energy-efficient 

driving and energy recuperation are important factors for BEV drivers. There are two 

important factors that can encourage a BEV driver to select an energy-efficient route rather 

than the traditional least travel time route: (i) reduce the operating cost, and (ii) improve 

the driving range. A BEV driver needs to pay for electricity to charge the battery. In 

addition, with every charge-discharge cycle, battery life degrades. Therefore, a BEV driver 

may prefer a route with extra travel time but with reduced energy consumption to decrease 

operating cost. Because the initial state-of-charge (SOC) of electric battery may not always 

be full before starting a trip, or the travel distance may be close to the driving range, some 

BEV drivers may face the dilemma of range anxiety because of the fear of running out of 

battery charge before completing the trip. In such a situation, a BEV driver may select a 
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route with higher level of congestion to recuperate a part of kinetic energy lost to recharge 

the battery so as to improve the range. In addition, for BEVs, energy consumed per unit 

distance traveled is lower at moderate speed than at higher speed. This can further 

incentivize BEV drivers to select more congested routes under range anxiety. The presence 

of BEVs in the traffic stream with the above characteristics of route choice raises two 

interesting questions: (i) whether the incentives in terms of energy savings and range 

improvement, and the range anxiety factor, can lead to different route selection by BEV 

drivers as compared to the ICEV drivers, and (ii) whether this difference in route choice 

behavior can affect network performance in terms of system travel time. These two 

questions form the motivation for this study. 

This study evaluates the network performance under equilibrium conditions for 

mixed traffic flow with BEVs and ICEVs by accounting for the difference in their route 

choice behavior. A multi-class dynamic user equilibrium (MCDUE) model is proposed to 

investigate the equilibrium of traffic network. The BEVs’ route choice behavior is modeled 

by considering the tradeoff between travel time and energy consumption, and the range 

anxiety. A microscopic simulation-based solution procedure is proposed to enable accurate 

computation of energy consumption by using a detailed speed profile rather than a simple 

function of distance. The effect of battery recuperation is also factored in estimating energy 

consumption. Thus, the effect of traffic conditions on energy consumption, and 

subsequently the route choice of BEVs, is captured in a realistic manner. BEV range 

anxiety is modeled as a step function that triggers when the remaining battery SOC is less 

than a pre-specified threshold percentage. This introduces nonlinearity in the travel cost 

function. As part of the solution procedure, a time-dependent least cost path problem for 

BEVs is developed as a mixed integer linear model by considering a nonlinear travel cost 

function. 

The study experiments show that ICEVs prefer to choose routes with least travel 

time while BEVs desire routes with slower speeds to save energy and/or improve range. 

Based on the current and near future prospects of technology, BEVs will have maximum 

fuel-efficiency at lower speeds (~15mph) while ICEVs are fuel-efficient in moderate speed 
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range (~45mph). Due to the need for energy-efficiency and range improvement in the route 

selection for BEVs, the network performance in terms of average travel time and average 

battery SOC consumption (energy consumption as a percentage of battery capacity) is also 

analyzed. 

This study has contributions for both theory and practice. In a theoretical context, 

it provides an analytical treatment where the congestion and energy imperatives of ICEVs 

and BEVs, respectively, are synergistically traded off. This potentially has the synergistic 

implication that the traffic system performance can be enhanced beyond that of a traffic 

stream with only ICEVs. This study also extends the current literature related to BEV 

routing by incorporating the effect of range anxiety in route choice behavior realistically 

by considering accurate battery SOC consumption based on detailed speed profile rather 

than a simple function of distance. From a practical perspective, this result provides 

insights to decision-makers on analyzing BEV route choice to manage network-wide traffic 

conditions towards system optimum without exclusively using just monetary instruments 

like tolling or congestion pricing, at least under mixed traffic environments. 

3.1 Multi-Class Dynamic User Equilibrium Model (MCDUE) 

3.1.1 Problem statement 

We consider a mixed traffic scenario consisting of BEV and ICEV drivers whose 

route choices are based on the DUE principle with respect to the generalized cost. That is, 

they seek the individual least time-dependent generalized cost in their route selection. The 

generalized cost for BEVs includes three components: (1) route travel time, (2) energy 

consumption, and (3) cost reflecting range anxiety when the remaining SOC level is below 

a certain threshold. The generalized cost for ICEVs includes only the route travel time. 

Different from the more extensively studied analytical single user class DUE (Peeta and 

Ziliaskopoulos, 2001), the problem is modeled as a multiple user class DUE formulation 

with two vehicle classes (BEVs and ICEVs). This study extends the single user class DUE 

formulation proposed by Ban et al. (2008) as a complementarity problem to multiple user 

classes. 
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3.1.2 MCDUE formulation 

The notations used are as follows: 

Sets: 
𝐺𝐺 Network, 𝐺𝐺 ≡ (𝑁𝑁,𝐴𝐴); 
𝑁𝑁 Set of nodes; 
𝐴𝐴 Set of links; 
𝑇𝑇 Time horizon; 
𝑅𝑅 Set of origins; 
𝑆𝑆 Set of destinations; 
ℳ Set of vehicle classes, ℳ ≡ (𝐸𝐸, 𝐼𝐼); 
𝐸𝐸 BEV class; 
𝐼𝐼 ICEV class; 

𝐴𝐴(𝑖𝑖) Set of outbound links of node 𝑖𝑖 ∈ 𝑁𝑁; 
𝐵𝐵(𝑖𝑖) Set of inbound links of node 𝑖𝑖 ∈ 𝑁𝑁; 
𝐾𝐾𝑟𝑟𝑟𝑟 Set of simple paths from origin 𝑟𝑟 ∈ 𝑅𝑅 to destination 𝑠𝑠 ∈ 𝑆𝑆; 
𝐿𝐿𝑘𝑘 Sequence of links in path 𝑘𝑘 ∈ 𝐾𝐾𝑟𝑟𝑟𝑟. 

Indices: 
𝑡𝑡 Time period, 𝑡𝑡 ∈ 𝑇𝑇; 
𝑡𝑡𝑑𝑑 Departure time period, 𝑡𝑡𝑑𝑑 ∈ 𝑇𝑇; 
𝑖𝑖 Node, 𝑖𝑖 ∈ 𝑁𝑁; 
𝑎𝑎 Link, 𝑎𝑎 ∈ 𝐴𝐴; 
𝑟𝑟 Origin node, 𝑟𝑟 ∈ 𝑅𝑅; 
𝑠𝑠 Destination node, 𝑠𝑠 ∈ 𝑆𝑆; 
𝑚𝑚 Vehicle class, 𝑚𝑚 ∈ ℳ; 
ℎ𝑎𝑎 Head node of link 𝑎𝑎; 
𝑙𝑙𝑎𝑎 Tail node of link 𝑎𝑎; 
𝑘𝑘 Path, 𝑘𝑘 ∈ 𝐾𝐾𝑟𝑟𝑟𝑟. 

Parameters: 

𝑑𝑑𝑖𝑖𝑟𝑟𝑚𝑚(𝑡𝑡) 
Time-dependent travel demand from node 𝑖𝑖 ∈ 𝑁𝑁 to destination 𝑠𝑠 ∈ 𝑆𝑆 for 
each vehicle class 𝑚𝑚 in time period 𝑡𝑡 ∈ 𝑇𝑇 

𝜗𝜗 Value of time; 
𝛼𝛼 Coefficient of energy cost for BEV class; 
𝛾𝛾 Coefficient of range anxiety cost for BEV class; 
𝜔𝜔 Range anxiety threshold percentage; 
𝒦𝒦 Battery capacity. 
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Variables: 
𝜏𝜏𝑎𝑎(𝑡𝑡) Travel time on link 𝑎𝑎 in time period 𝑡𝑡; 
𝒮𝒮𝑎𝑎(𝑡𝑡) Energy consumed on link 𝑎𝑎 in time period 𝑡𝑡; 
𝐶𝐶𝑎𝑎𝑚𝑚(𝑡𝑡) Generalized travel cost for vehicle class 𝑚𝑚 on link 𝑎𝑎 in time period 𝑡𝑡; 

𝜋𝜋𝑖𝑖𝑟𝑟𝑚𝑚(𝑡𝑡) 
Minimum generalized travel cost from node 𝑖𝑖 to destination 𝑠𝑠 for vehicle 
class 𝑚𝑚 in time period 𝑡𝑡; 

𝜏𝜏𝑎𝑎(𝑡𝑡) Travel time on link 𝑎𝑎 in time period 𝑡𝑡; 

𝑢𝑢𝑎𝑎𝑟𝑟𝑚𝑚 (𝑡𝑡) 
Inflow rate into link 𝑎𝑎 bound for destination 𝑠𝑠 for vehicle class 𝑚𝑚 in time 
period 𝑡𝑡; 

𝑣𝑣𝑎𝑎𝑟𝑟𝑚𝑚(𝑡𝑡) 
Exit flow rate from link 𝑎𝑎 bound for destination 𝑠𝑠 for vehicle class 𝑚𝑚 in time 
period 𝑡𝑡; 

𝑥𝑥𝑎𝑎𝑟𝑟𝑚𝑚(𝑡𝑡) Flow on link 𝑎𝑎 bound for destination 𝑠𝑠 for vehicle class 𝑚𝑚 in time period 𝑡𝑡; 
𝑢𝑢𝑎𝑎𝑚𝑚(𝑡𝑡) Inflow rate into link 𝑎𝑎 for vehicle class 𝑚𝑚 in time period 𝑡𝑡; 
𝑣𝑣𝑎𝑎𝑚𝑚(𝑡𝑡) Exit flow rate from link 𝑎𝑎 for vehicle class 𝑚𝑚 in time period 𝑡𝑡; 

𝑓𝑓𝑟𝑟𝑟𝑟,𝑘𝑘
𝐸𝐸 (𝑡𝑡𝑑𝑑) 

Flow on path 𝑘𝑘 from origin 𝑟𝑟 to destination 𝑠𝑠 departing in time period 𝑡𝑡𝑑𝑑 for 
BEV class; 

𝒮𝒮𝑇𝑇 Total energy consumption; 

𝛽𝛽 
Variable associated with range anxiety cost; 0 if the total energy 
consumption (𝒮𝒮𝑇𝑇) is less than or equal to range anxiety threshold 𝜔𝜔 ∗ 𝒦𝒦, 𝛾𝛾 
otherwise. 

 

Under DUE, the generalized travel costs of all utilized time-dependent routes for 

the same departure time are equal and less than or equal to those of unutilized routes. For 

the MCDUE, this principle holds for each vehicle class. The MCDUE can be formulated 

as a complementarity problem using Equation (1). The mathematical operator 𝑝𝑝 ⊥ 𝑞𝑞 

denotes that 𝑝𝑝 is perpendicular to q, that is, 𝑝𝑝𝑇𝑇𝑞𝑞 = 0. Equation (1) implies that for each 

vehicle class 𝑚𝑚 ∈ ℳ, the inflow rate 𝑢𝑢𝑎𝑎𝑟𝑟𝑚𝑚 (𝑡𝑡) into link 𝑎𝑎 bound for destination 𝑠𝑠 in time 

period 𝑡𝑡 can be non-zero only if the generalized travel cost 𝐶𝐶𝑎𝑎𝑚𝑚(𝑡𝑡) on link 𝑎𝑎 in time period 

𝑡𝑡 is equal to the difference between the minimum generalized travel cost 𝜋𝜋𝑙𝑙𝑎𝑎𝑟𝑟
𝑚𝑚 (𝑡𝑡) from tail 

node 𝑙𝑙𝑎𝑎 of link 𝑎𝑎 to destination 𝑠𝑠 in time period 𝑡𝑡 and the minimum generalized travel cost 

𝜋𝜋ℎ𝑎𝑎𝑟𝑟
𝑚𝑚 �𝑡𝑡 + 𝜏𝜏𝑎𝑎(𝑡𝑡)� from head node ℎ𝑎𝑎  of link 𝑎𝑎 to destination 𝑠𝑠 in time period 𝑡𝑡 + 𝜏𝜏𝑎𝑎(𝑡𝑡), 

where 𝜏𝜏𝑎𝑎(𝑡𝑡) is the travel time on link 𝑎𝑎 in time period 𝑡𝑡. 
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0 ≤ 𝑢𝑢𝑎𝑎𝑟𝑟𝑚𝑚 (𝑡𝑡) ⊥ �𝐶𝐶𝑎𝑎𝑚𝑚(𝑡𝑡) + 𝜋𝜋ℎ𝑎𝑎𝑟𝑟
𝑚𝑚 �𝑡𝑡 + 𝜏𝜏𝑎𝑎(𝑡𝑡)� − 𝜋𝜋𝑙𝑙𝑎𝑎𝑟𝑟

𝑚𝑚 (𝑡𝑡)� ≥ 0 ∀𝑚𝑚,𝑎𝑎, 𝑠𝑠, 𝑡𝑡 (1) 

Generalized cost functions 

As discussed earlier, the generalized travel cost functions are different for the two 

vehicle classes. For ICEVs, the generalized cost includes travel time only; for BEVs it 

includes travel time, energy related costs and range anxiety if the remaining battery SOC 

level is below a threshold. The BEV and ICEV drivers select the least cost routes based on 

the generalized travel cost. The energy related costs account for both monetary (electricity 

consumption cost) and non-monetary (such as long-recharging time, battery degradation, 

etc.) costs related to energy consumption. To incorporate range anxiety behavior, when the 

remaining SOC is less than a pre-specified threshold percentage (𝜔𝜔) of the battery capacity 

(𝒦𝒦), a cost associated with range anxiety (𝛽𝛽 = 𝛾𝛾) is imposed for the BEV. Otherwise, it is 

assumed that there is no range anxiety issue for the BEV driver, that is, the range anxiety 

cost is zero (𝛽𝛽 = 0). Also, while the range anxiety threshold can vary across drivers, we 

assume it to be homogeneous across BEV drivers in both the study formulation and 

experiments to focus on understanding the network effects of range anxiety by using the 

notion of low anxiety and high anxiety drivers. Further, the heterogeneity in range anxiety 

threshold can be seamlessly incorporated by extending the study formulation through the 

use of multiple BEV classes in the proposed MCDUE. 

The generalized travel cost functions for BEVs (𝐶𝐶𝑎𝑎𝐸𝐸(𝑡𝑡)) and ICEVs (𝐶𝐶𝑎𝑎𝐼𝐼(𝑡𝑡)) on link 

𝑎𝑎 in time period 𝑡𝑡 are defined using Equations (2) and (3). These cost functions involve 

two variables, 𝜏𝜏𝑎𝑎(𝑡𝑡) and 𝒮𝒮𝑎𝑎(𝑡𝑡), representing travel time and energy consumption on link 𝑎𝑎 

in time period 𝑡𝑡 respectively. The parameters 𝜗𝜗, 𝛼𝛼 and 𝛾𝛾 refer to value of time, coefficient 

of energy related costs and cost associated with range anxiety, respectively. 

𝐶𝐶𝑎𝑎𝐸𝐸(𝑡𝑡) = 𝜗𝜗 ∙ 𝜏𝜏𝑎𝑎(𝑡𝑡) + 𝛼𝛼 ∙ 𝒮𝒮𝑎𝑎(𝑡𝑡) + 𝛽𝛽 ∙ 𝒮𝒮𝑎𝑎(𝑡𝑡) ∀𝑎𝑎, 𝑡𝑡 (2) 

𝐶𝐶𝑎𝑎𝐼𝐼(𝑡𝑡) = 𝜗𝜗 ∙ 𝜏𝜏𝑎𝑎(𝑡𝑡) ∀𝑎𝑎, 𝑡𝑡 (3) 
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𝛽𝛽 = �γ 𝑖𝑖𝑓𝑓 𝒮𝒮𝑇𝑇 ≥ 𝜔𝜔 ∗𝒦𝒦
0 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

�   

Mass balance constraints 

The mass balance constraints ensure that the flow for each vehicle class 𝑚𝑚 bound 

for destination 𝑠𝑠 is conserved for every link 𝑎𝑎 ∈ 𝐴𝐴 in each time period 𝑡𝑡 ∈ 𝑇𝑇, that is, the 

rate of change of link flow 𝑥𝑥𝑎𝑎𝑟𝑟𝑚𝑚 (𝑡𝑡) is the difference between inflow rate 𝑢𝑢𝑎𝑎𝑟𝑟𝑚𝑚 (𝑡𝑡) and exit 

flow rate 𝑣𝑣𝑎𝑎𝑟𝑟𝑚𝑚(𝑡𝑡). This constraint is expressed in Equation (4). 

𝑑𝑑𝑥𝑥𝑎𝑎𝑟𝑟𝑚𝑚(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑢𝑢𝑎𝑎𝑟𝑟𝑚𝑚 (𝑡𝑡) − 𝑣𝑣𝑎𝑎𝑟𝑟𝑚𝑚(𝑡𝑡) ∀𝑚𝑚,𝑎𝑎, s, 𝑡𝑡 (4) 

Flow conservation constraints 

These constraints ensure that the flow for each vehicle class 𝑚𝑚  bound for 

destination 𝑠𝑠  is conserved at every node 𝑖𝑖 ∈ 𝑁𝑁  in each time period  𝑡𝑡 ∈ 𝑇𝑇 ; the total 

outbound flow from a node is equal to the demand originating at that node (𝑑𝑑𝑖𝑖𝑟𝑟𝑚𝑚(𝑡𝑡)) plus 

the total inbound flow at that node. This constraint is expressed as: 

� 𝑢𝑢𝑎𝑎𝑟𝑟𝑚𝑚 (𝑡𝑡)
𝑎𝑎∈𝐴𝐴(𝑖𝑖)

= 𝑑𝑑𝑖𝑖𝑟𝑟𝑚𝑚(𝑡𝑡) + � 𝑣𝑣𝑎𝑎𝑟𝑟𝑚𝑚(𝑡𝑡)
𝑎𝑎∈𝐵𝐵(𝑖𝑖)

 ∀𝑚𝑚, 𝑖𝑖, 𝑠𝑠, 𝑡𝑡 (5) 

FIFO constraints 

The first-in first-out (FIFO) principle states that vehicles departing later cannot, on 

average, exit a link earlier; that is, vehicles must exit the link later than the vehicles that 

entered earlier than them. While FIFO may not always hold in reality as vehicles can 

overtake others, for aggregated flow this constraint is satisfied. FIFO constraints can be 

represented as: 

𝑡𝑡1 + 𝜏𝜏𝑎𝑎(𝑡𝑡1) ≤ 𝑡𝑡2 + 𝜏𝜏𝑎𝑎(𝑡𝑡2) ∀ 𝑡𝑡1 < 𝑡𝑡2 (6) 

Flow propagation constraints 

The flow propagation constraints describe the spatial and temporal traffic flow 

dynamics at the macroscopic level (Astarita, 1996) as shown in Equation (7). In particular, 
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these constraints depict the relationship between combined inflow rate in time period 𝑡𝑡 and 

combined exit flow in time period 𝑡𝑡 + 𝜏𝜏𝑎𝑎(𝑡𝑡) of all vehicle classes with change in travel 

time 𝜏𝜏𝑎𝑎(𝑡𝑡) of link 𝑎𝑎  in time period 𝑡𝑡 . These constraints are synergistic with the FIFO 

principle. They are based on the assumption that driving characteristics, such as maximum 

speed and acceleration, of all vehicle classes are similar. 

� 𝑣𝑣𝑎𝑎𝑟𝑟𝑚𝑚�𝑡𝑡 + 𝜏𝜏𝑎𝑎(𝑡𝑡)�
𝑚𝑚∈ℳ

=
∑ 𝑢𝑢𝑎𝑎𝑟𝑟𝑚𝑚 (𝑡𝑡)𝑚𝑚∈ℳ

1 + 𝑑𝑑𝜏𝜏𝑎𝑎(𝑡𝑡)
𝑑𝑑𝑡𝑡�

 ∀𝑎𝑎, 𝑠𝑠, 𝑡𝑡 (7) 

Definitional constraints 

Equation (8) expresses the aggregated inflow rate 𝑢𝑢𝑎𝑎𝑚𝑚(𝑡𝑡) and exit flow rate 𝑣𝑣𝑎𝑎𝑚𝑚(𝑡𝑡) 

over all destinations for link 𝑎𝑎 and vehicle class 𝑚𝑚 in time period 𝑡𝑡. Equation (9) illustrates 

the aggregated link flow 𝑥𝑥𝑎𝑎𝑚𝑚(𝑡𝑡) over all destinations for link 𝑎𝑎 and vehicle class 𝑚𝑚 in time 

period 𝑡𝑡 . Equations (10) and (11) are the non-negativity constraints for flow and cost 

variables. 

𝑢𝑢𝑎𝑎𝑚𝑚(𝑡𝑡) = �𝑢𝑢𝑎𝑎𝑟𝑟𝑚𝑚 (𝑡𝑡)
𝑟𝑟∈𝑆𝑆

, 𝑣𝑣𝑎𝑎𝑚𝑚(𝑡𝑡) = �𝑣𝑣𝑎𝑎𝑟𝑟𝑚𝑚(𝑡𝑡)
𝑟𝑟∈𝑆𝑆

 ∀𝑚𝑚,𝑎𝑎, 𝑡𝑡 (8) 

𝑥𝑥𝑎𝑎𝑚𝑚(𝑡𝑡) = �𝑥𝑥𝑎𝑎𝑟𝑟𝑚𝑚(𝑡𝑡)
𝑟𝑟∈𝑆𝑆

 ∀𝑚𝑚,𝑎𝑎, 𝑡𝑡 (9) 

𝑢𝑢𝑎𝑎𝑟𝑟𝑚𝑚 (𝑡𝑡) ≥ 0, 𝑣𝑣𝑎𝑎𝑟𝑟𝑚𝑚(𝑡𝑡) ≥ 0, 𝑥𝑥𝑎𝑎𝑟𝑟𝑚𝑚(𝑡𝑡) ≥ 0, ∀𝑚𝑚,𝑎𝑎, 𝑠𝑠, 𝑡𝑡 (10) 

𝜋𝜋𝑙𝑙𝑎𝑎𝑟𝑟
𝑚𝑚 (𝑡𝑡) ≥ 0, 𝜋𝜋ℎ𝑎𝑎𝑟𝑟

𝑚𝑚 (𝑡𝑡) ≥ 0, ∀𝑚𝑚,𝑎𝑎, 𝑠𝑠, 𝑡𝑡 (11) 

Feasibility constraints 

Feasibility constraints are required to address two issues associated with BEVs: (i) 

that the trip length does not exceed the BEV battery capacity; (ii) the need to circumvent 

the possibility of cycles that may arise due to negative link costs for BEVs. We assume 

that BEV recharging occurs at either origin or destination, and there is no en route charging. 

Let 𝑓𝑓𝑟𝑟𝑟𝑟,𝑘𝑘
𝐸𝐸 (𝑡𝑡𝑑𝑑) be the BEV flow on a simple path 𝑘𝑘 ∈ 𝐾𝐾𝑟𝑟𝑟𝑟 from origin 𝑟𝑟 to destination 𝑠𝑠 in 
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departure time period 𝑡𝑡𝑑𝑑. Equation (12) illustrates that the inflow rate 𝑢𝑢𝑎𝑎𝑟𝑟𝐸𝐸 (𝑡𝑡) of BEVs on 

link 𝑎𝑎 bound for destination 𝑠𝑠 in time period 𝑡𝑡 is the sum of flows from all origins 𝑟𝑟 ∈ 𝑅𝑅 

bound for destination 𝑠𝑠 departing in any time period 𝑡𝑡𝑑𝑑 ∈ 𝑇𝑇 such that these flows reach 

link 𝑎𝑎 in time period 𝑡𝑡. Equation (13) defines an indicator variable 𝐼𝐼𝑎𝑎,𝑡𝑡
𝑘𝑘 (𝑡𝑡𝑑𝑑) with value 

equal to 1 if link 𝑎𝑎 is in the sequence of links 𝐿𝐿𝑘𝑘 for path 𝑘𝑘 and the flow departing from 

origin 𝑟𝑟 to destination 𝑠𝑠 in time period 𝑡𝑡𝑑𝑑 enters link a in time period 𝑡𝑡, and 0 otherwise. 

Equations (14) and (15) define a function 𝜙𝜙𝐿𝐿𝑘𝑘[𝑗𝑗](𝑡𝑡𝑑𝑑) to represent the time period in which 

the flow departing in time period 𝑡𝑡𝑑𝑑 reaches the 𝑗𝑗𝑡𝑡ℎ link in the sequence of links 𝐿𝐿𝑘𝑘 for path 

𝑘𝑘. Note that as variable 𝜏𝜏𝑎𝑎(𝑡𝑡) is strictly positive, Equation (15) eliminates the possibility 

of any cycle in the path. Equation (16) restricts the set of paths 𝐾𝐾𝑟𝑟𝑟𝑟 to contain paths with 

minimum generalized cost for every O-D pair 𝑟𝑟𝑠𝑠 for every departure time period 𝑡𝑡𝑑𝑑 ∈ 𝑇𝑇 

for BEVs. Equation (17) satisfies the battery capacity constraint for BEVs, that is, the total 

battery consumption for BEVs on path 𝑘𝑘 from origin 𝑟𝑟 to destination 𝑠𝑠 departing in time 

period 𝑡𝑡𝑑𝑑 cannot exceed the maximum battery capacity 𝒦𝒦. 

𝑢𝑢𝑎𝑎𝑟𝑟𝐸𝐸 (𝑡𝑡) = � � � 𝑓𝑓𝑟𝑟𝑟𝑟,𝑘𝑘
𝐸𝐸 (𝑡𝑡𝑑𝑑)𝐼𝐼𝑎𝑎,𝑡𝑡

𝑘𝑘

𝑘𝑘∈𝐾𝐾𝑟𝑟𝑟𝑟

(𝑡𝑡𝑑𝑑) 
𝑟𝑟∈𝑅𝑅𝑡𝑡𝑑𝑑∈𝑇𝑇,

𝑡𝑡𝑑𝑑≤𝑡𝑡

 
∀𝑎𝑎, 𝑠𝑠, 𝑡𝑡 (12) 

𝐼𝐼𝑎𝑎,𝑡𝑡
𝑘𝑘 (𝑡𝑡𝑑𝑑) = �1 𝑖𝑖𝑓𝑓 𝐿𝐿𝑘𝑘[𝑗𝑗] = 𝑎𝑎,𝜙𝜙𝐿𝐿𝑘𝑘[𝑗𝑗](𝑡𝑡𝑑𝑑) = 𝑡𝑡

0 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒
� ∀𝑗𝑗 ∈ 𝐼𝐼+, 𝑗𝑗 ≤ |𝐿𝐿𝑘𝑘| (13) 

𝜙𝜙𝐿𝐿𝑘𝑘[1](𝑡𝑡𝑑𝑑) = 𝑡𝑡𝑑𝑑   (14) 

𝜙𝜙𝐿𝐿𝑘𝑘[𝑗𝑗+1](𝑡𝑡𝑑𝑑) = 𝜙𝜙𝐿𝐿𝑘𝑘[𝑗𝑗](𝑡𝑡𝑑𝑑) + 𝜏𝜏𝐿𝐿𝑘𝑘[𝑗𝑗] �𝜙𝜙𝐿𝐿𝑘𝑘[𝑗𝑗](𝑡𝑡𝑑𝑑)�  (15) 

�𝐶𝐶𝑗𝑗𝐸𝐸 �𝜙𝜙𝐿𝐿𝑘𝑘[𝑗𝑗](𝑡𝑡𝑑𝑑)�
|𝐿𝐿𝑘𝑘|

𝑗𝑗=1

= 𝜋𝜋𝑟𝑟𝑟𝑟𝐸𝐸 (𝑡𝑡𝑑𝑑) ∀𝑟𝑟, 𝑠𝑠,𝑘𝑘, 𝑡𝑡𝑑𝑑  (16) 

�𝑆𝑆𝑎𝑎 �𝜙𝜙𝐿𝐿𝑘𝑘[𝑗𝑗](𝑡𝑡𝑑𝑑)�
|𝐿𝐿𝑘𝑘|

𝑗𝑗=1

≤ 𝒦𝒦 ∀𝑟𝑟, 𝑠𝑠, 𝑘𝑘 (17) 
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Equations (1) – (17) constitute the complementarity based MCDUE model. The 

next section presents a solution procedure for it. 

3.2 Solution procedure 

This section illustrates the solution procedure and summarizes its various 

components. Analytical methods have been proposed in the literature to solve the 

complementarity problem (Ban et al., 2008). The complexity of the MCDUE model is 

similar to that of the DUE formulation proposed by Ban et al. (2008), and hence a similar 

solution strategy can be used to solve it analytically. 

As discussed earlier, the generalized travel cost function of BEVs consists of travel 

time, energy consumption, and range anxiety if the SOC level is below a threshold. The 

energy consumed and its regeneration due to RBS depend on the microscopic speed profile, 

particularly the speed and acceleration profiles. These microscopic details of speed 

profiles, and hence the percentage of battery charge consumed and its regeneration, are 

difficult to express in an analytical closed form, precluding the use of an analytical solution 

approach. Therefore, an iterative solution procedure is adopted to solve the MCDUE 

model. The solution procedure uses a microscopic traffic simulator, an energy consumption 

model, a time-dependent least cost path algorithm, and a path-flow update mechanism in 

each iteration. 

3.2.1 Solution procedure 

Figure 2 illustrates the steps of the solution procedure. The solution procedure is 

initialized using a fixed time-dependent origin-destination (O-D) demand for each vehicle 

class. In the 0th iteration, a set of path flows is determined using all-or-nothing (AON) 

assignment for each O-D pair for each vehicle class for all time periods. Then, a 

microscopic traffic simulator (using AIMSUN (Barceló and Casas, 2005; Casas et al., 

2010)) is used for network loading to obtain vehicle travel times and BEV speed profiles 

based on the initial set of path flows. The energy consumption for BEVs is computed using 

Haaren’s model (Van Haaren, 2012) based on BEVs speed profiles (see Section 3.2.3). The  
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Figure 2 Solution Procedure 
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energy consumption and travel time for each link in each time period are determined by 

taking the average of energy consumed and travel time experienced on that link, 

respectively, for all vehicles entering the link in corresponding time period. Next, the time-

dependent least (generalized) cost paths (TDLCPs) are determined for both ICEVs and 

BEVs. For ICEVs, the time, energy related costs and range anxiety. The computed 

TDLCPs are appended to their corresponding path set if they are already not in that set. 

The path flows for each O-D pair for each vehicle class for all time periods are updated 

simultaneously using a modified version of a flow update mechanism proposed by Smith 

(Smith, 1984). The iteration counter is updated by 1. The updated path flows are simulated 

using AIMSUN to generate the vehicle travel times and BEV speed profiles. This process 

is continued until convergence is achieved, which occurs when the average of the 

difference between the generalized path travel cost of each path of each O-D pair and the 

lowest generalized path travel cost for that O-D pair is less than 5% of the lowest 

generalized path travel cost. 

3.2.2 Role of microscopic simulation 

The generalized link travel cost for a BEV includes the battery SOC which requires the 

vehicle’s speed profile as input to compute energy consumption. Microscopic traffic 

simulation software AIMSUN is used to obtain link travel times and BEV speed profiles. 

In zeroth iteration, the simulation is performed using path flows based on AON assignment. 

In future iterations, the generated TDLCPs and the corresponding flows obtained using the 

modified Smith's mechanism for both vehicle classes for each O-D pair for all time periods 

are provided as input to AIMSUN. Hence, the role of microscopic traffic simulation in this 

study is to generate BEV speed profiles and vehicle travel times. 

3.2.3 Electric vehicle energy consumption model 

The model proposed by (Van Haaren, 2012) is used to compute battery energy 

consumption. It considers power losses at constant speed (𝑉𝑉)  and variable speed 

separately. The power loss at constant speed (𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟)  is the sum of the losses due to 

aerodynamics (𝑃𝑃𝑎𝑎𝑎𝑎𝑟𝑟), drive-train (𝑃𝑃𝑑𝑑𝑟𝑟), rolling resistance (𝑃𝑃𝑟𝑟𝑟𝑟) and ancillary losses (𝑃𝑃𝑎𝑎𝑐𝑐𝑐𝑐) 
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as shown in Equations (18) to (22). The energy loss at constant speed (𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟) is the 

summation of power loss over time for the time duration of a vehicle’s speed profile (𝒟𝒟). 

A moving vehicle has two types of kinetic energy (𝐸𝐸𝑘𝑘𝑖𝑖𝑐𝑐): linear (𝐸𝐸𝑙𝑙𝑖𝑖𝑐𝑐) and rotational (𝐸𝐸𝑟𝑟𝑐𝑐𝑡𝑡). 

Energy loss at variable speed is due to change in kinetic energy (Δ𝐸𝐸𝑘𝑘𝑖𝑖𝑐𝑐). For computational 

simplicity, the model assumes that the rotational kinetic energy is about 5% of linear kinetic 

energy. During acceleration phase, the electric energy is converted into kinetic energy with 

about 85% efficiency (𝛽𝛽𝑎𝑎𝑒𝑒𝑒𝑒). During deceleration phase, a part of lost kinetic energy is 

recuperated as electric energy with efficiency (𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟) of around 40%. The rate of change of 

kinetic energy (Δ𝐸𝐸𝑘𝑘𝑖𝑖𝑐𝑐) and the energy conversion from battery-to-wheel and vice versa 

Thus, the total energy consumption is the net sum of energy losses at constant speed 

(𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟) , energy loss during acceleration phase (𝐸𝐸𝑎𝑎𝑐𝑐𝑐𝑐) and energy recuperation during 

deceleration phase (𝐸𝐸𝑑𝑑𝑎𝑎𝑐𝑐). As stated earlier, the model parameters are based on empirical 

data from Tesla Roadster, as shown in Table 1. The quality of the model results depends 

on the time resolution of the speed profile data (𝛿𝛿); the study experiments use 1-second 

speed profile data.  

𝑃𝑃𝑎𝑎𝑎𝑎𝑟𝑟 =
1
2
𝜌𝜌𝐴𝐴𝐶𝐶𝑑𝑑𝑉𝑉3  (18) 

𝑃𝑃𝑑𝑑𝑟𝑟 = 𝛼𝛼𝑑𝑑𝑟𝑟𝑉𝑉3 + 𝛽𝛽𝑑𝑑𝑟𝑟𝑉𝑉2 + 𝛾𝛾𝑑𝑑𝑟𝑟𝑉𝑉 + 𝑐𝑐𝑑𝑑𝑟𝑟  (19) 

𝑃𝑃𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑉𝑉  (20) 

𝑃𝑃𝑎𝑎𝑐𝑐𝑐𝑐 = 1.0  (21) 

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟 = 𝑃𝑃𝑎𝑎𝑎𝑎𝑟𝑟 + 𝑃𝑃𝑑𝑑𝑟𝑟 + 𝑃𝑃𝑟𝑟𝑟𝑟 + 𝑃𝑃𝑎𝑎𝑐𝑐𝑐𝑐   (22) 

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟 = �𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑘𝑘 ∗ 𝛿𝛿
𝒟𝒟 𝛿𝛿⁄

𝑘𝑘=1

   (23) 

𝐸𝐸𝑘𝑘𝑖𝑖𝑐𝑐 = 𝐸𝐸𝑙𝑙𝑖𝑖𝑐𝑐 + 𝐸𝐸𝑟𝑟𝑐𝑐𝑡𝑡 ≈ 1.05 ∗ 𝐸𝐸𝑙𝑙𝑖𝑖𝑐𝑐  (24) 

𝐸𝐸𝑙𝑙𝑖𝑖𝑐𝑐 =
1
2
𝑚𝑚𝑉𝑉2  (25) 
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𝐸𝐸𝑎𝑎𝑐𝑐𝑐𝑐 =
∆𝐸𝐸𝑘𝑘𝑖𝑖𝑐𝑐
𝛽𝛽𝑎𝑎𝑒𝑒𝑒𝑒

  (26) 

𝐸𝐸𝑑𝑑𝑎𝑎𝑐𝑐 = 𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟 ∗ ∆𝐾𝐾𝐸𝐸  (27) 

Table 1 Parameters of the energy consumption model (Van Haaren, 2012) 
Parameter Definition  Value 
𝐶𝐶𝑑𝑑 Drag coefficient  0.29 
ρ Air density (kg/m3) 1.2 
𝐴𝐴 Vehicle front area (m2) 2.27 
𝛼𝛼𝑑𝑑𝑟𝑟 Drivetrain coefficient 1 4*10-6 
𝛽𝛽𝑑𝑑𝑟𝑟 Drivetrain coefficient 2 5*10-4 
𝛾𝛾𝑑𝑑𝑟𝑟 Drivetrain coefficient 3 0.0293 
𝑐𝑐𝑑𝑑𝑟𝑟 Drivetrain coefficient 4 0.375 
𝑐𝑐𝑟𝑟𝑟𝑟 Rolling resistance coefficient 0.0075 
𝑚𝑚 Vehicle mass (kg) 1520 
𝑚𝑚 Gravity (m/s2) 9.81 
𝛽𝛽𝑎𝑎𝑒𝑒𝑒𝑒 Battery to motor efficiency 0.85 
𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟 Regeneration efficiency  0.4 

 

3.2.4 Time-Dependent Least Cost Path (TDLCP) algorithm 

As illustrated in Figure 1, in each iteration the TDLCP algorithm identifies a TDLCP for 

each vehicle class in each time period for each O-D pair. This path is appended to the 

corresponding path set if it is not already in it. Flows are shifted from paths with higher 

generalized costs to those with lower generalized costs (see Section 3.2.5 for the flow 

update process). 

TDLCPs for BEVs 

For BEVs, the generalized cost consists of travel time, energy related costs and the cost 

associated with range anxiety. The travel time and SOC on each link in each time period 

are obtained from AIMSUN. To solve the TDLCP problem, we construct a time-expanded 

network 𝐺𝐺𝑡𝑡(𝑁𝑁𝑡𝑡,𝐴𝐴𝑡𝑡) from the original network 𝐺𝐺(𝑁𝑁,𝐴𝐴) as follows. For each time period 𝑡𝑡, 

a copy of nodes 𝑁𝑁 is created. For each link 𝑎𝑎 ∈ 𝐴𝐴, if its travel time in time period 𝑡𝑡 is 𝜏𝜏𝑎𝑎(𝑡𝑡), 

a link 𝑏𝑏 ∈ 𝐴𝐴𝑡𝑡 in time-expanded network connecting from node 𝑙𝑙𝑎𝑎 in time period 𝑡𝑡 to node 

ℎ𝑎𝑎 in time period 𝑡𝑡 + 𝜏𝜏𝑎𝑎(𝑡𝑡) is constructed. Thus, the travel time of the newly constructed 
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link (𝜏𝜏𝑟𝑟) is equal to 𝜏𝜏𝑎𝑎(𝑡𝑡), and the energy consumed on the newly constructed link (𝒮𝒮𝑟𝑟) is 

equal to 𝒮𝒮𝑎𝑎(𝑡𝑡). The TDLCP for BEVs is to find the least generalized cost path in 𝐺𝐺𝑡𝑡 by 

solving the following mathematical formulation.  

The notations used are as follows: 

Sets:  
𝐺𝐺𝑡𝑡 Time-expanded network; 
𝑁𝑁𝑡𝑡 Set of nodes in 𝐺𝐺𝑡𝑡; 
𝐴𝐴𝑡𝑡 Set of links in 𝐺𝐺𝑡𝑡; 
𝑟𝑟𝑡𝑡 Origin node in 𝐺𝐺𝑡𝑡; 
𝑠𝑠𝑡𝑡 Destination node in 𝐺𝐺𝑡𝑡; 

Indices:  
𝑏𝑏 Link, 𝑏𝑏 ∈ 𝐴𝐴𝑡𝑡; 

Parameters:  
𝜏𝜏𝑟𝑟 Travel time on link 𝑏𝑏 ∈ 𝐴𝐴𝑡𝑡; 
𝒮𝒮𝑟𝑟 Energy consumed on link 𝑏𝑏 ∈ 𝐴𝐴𝑡𝑡; 
𝑀𝑀 Sufficiently large positive number; 

Variables:  

𝑓𝑓𝑖𝑖𝑗𝑗 
Decision variable, 𝑓𝑓𝑖𝑖𝑗𝑗 ∈ {0,1}, 𝑓𝑓𝑖𝑖𝑗𝑗 = 1 if link (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴𝑡𝑡 is selected, 0 
otherwise; 

𝑦𝑦 Auxiliary variable, 𝑦𝑦 ∈ {0,1}. 
 

The objective function (28) minimizes the generalized cost that includes three 

terms: path travel time, energy related costs, and cost associated with range anxiety. 

Equation (29) is the flow conservation constraint, implying that one unit of flow is sent 

from source 𝑟𝑟𝑡𝑡 to sink 𝑠𝑠𝑡𝑡 in 𝐺𝐺𝑡𝑡. Constraint (30) specifies that the energy consumed along 

the path is bounded by the BEV’s battery capacity 𝒦𝒦, that is, a BEV cannot run out of 

battery charge en route. Equations (31) – (34) state that if ∑ 𝒮𝒮𝑟𝑟𝑟𝑟∈𝐴𝐴𝑡𝑡 ∙ 𝑓𝑓𝑟𝑟 ≥ 𝜔𝜔 ∙ 𝒦𝒦, then 𝑦𝑦 =

1 and 𝛽𝛽 = 𝛾𝛾, otherwise 𝑦𝑦 = 0 and 𝛽𝛽 = 0. This implies that the cost associated with range 

anxiety is triggered only if the battery SOC consumed is more than the specific threshold 

percentage of battery (𝜔𝜔). If the SOC is below the threshold percentage of battery charge, 

there is no range anxiety issue for the BEV driver and 𝛽𝛽 = 0. The parameter 𝑀𝑀, also known 
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as “big M”, allows a binary variable to switch a constraint on or off. In this model, the 

minimum value of 𝑀𝑀 should be at least 𝒦𝒦. 

min�𝜗𝜗 ∙ � 𝜏𝜏𝑟𝑟
𝑟𝑟∈𝐴𝐴𝑡𝑡

∙ 𝑓𝑓𝑟𝑟 + 𝛼𝛼 � 𝒮𝒮𝑟𝑟 ∙ 𝑓𝑓𝑟𝑟
𝑟𝑟∈𝐴𝐴𝑡𝑡

+ � 𝛽𝛽 ∙ 𝒮𝒮𝑟𝑟
𝑟𝑟∈𝐴𝐴𝑡𝑡

∙ 𝑓𝑓𝑟𝑟�  (28) 

� 𝑓𝑓𝑖𝑖𝑗𝑗 − � 𝑓𝑓𝑗𝑗𝑖𝑖 =
(𝑗𝑗,𝑖𝑖)∈𝐴𝐴𝑡𝑡(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑡𝑡

�
1 𝑖𝑖𝑓𝑓 𝑖𝑖 = 𝑟𝑟𝑡𝑡

−1 𝑖𝑖𝑓𝑓 𝑖𝑖 = 𝑠𝑠𝑡𝑡
0 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

 ∀𝑖𝑖 ∈ 𝑁𝑁𝑡𝑡  (29) 

� 𝒮𝒮𝑟𝑟
𝑟𝑟∈𝐴𝐴𝑡𝑡

∙ 𝑓𝑓𝑟𝑟 ≤ 𝒦𝒦  (30) 

−𝑀𝑀(1 − 𝑦𝑦) ≤ � 𝒮𝒮𝑟𝑟
𝑟𝑟∈𝐴𝐴𝑡𝑡

∙ 𝑓𝑓𝑟𝑟 − 𝜔𝜔 ∙ 𝒦𝒦 ≤ 𝑀𝑀(𝑦𝑦)  (31) 

−𝑀𝑀(1 − 𝑦𝑦) ≤ 𝛽𝛽 − 𝛾𝛾 ≤ 𝑀𝑀(1 − 𝑦𝑦)  (32) 

−𝑀𝑀𝑦𝑦 ≤ 𝛽𝛽 ≤ 𝑀𝑀𝑦𝑦  (33) 

𝑦𝑦 ∈ {0,1},𝑓𝑓𝑟𝑟 ∈ {0,1} ∀𝑏𝑏 ∈ 𝐴𝐴𝑡𝑡 (34) 

Equations (28) – (34) specify a constrained shortest path problem as a mixed integer 

formulation. Note that the third term of objective function is nonlinear, which makes the 

model difficult to solve. Hence, next, we linearize the nonlinear term. 

Introduce a dummy variable 𝜇𝜇𝑟𝑟 such that 𝜇𝜇𝑟𝑟 = 𝛽𝛽 ∙ 𝑓𝑓𝑟𝑟. Then, the objective function 

be expressed as Equation (35). The constraint set (36) – (39) indicates that if 𝑓𝑓𝑟𝑟 = 1, 𝜇𝜇𝑟𝑟 =

𝛽𝛽; otherwise 𝑓𝑓𝑟𝑟 = 0, then 𝜇𝜇𝑟𝑟 = 0. Then, the objective function (35) is linear. In summary, 

Equations (29) – (39) represent a mixed integer linear program (MILP) that is solved to 

obtain the TDLCPs for the BEV class. The proposed MILP is solved using IBM ILOG 

CPLEX 12.5 MILP solver (CPLEX, 2012). 

min�𝜗𝜗 ∙ � 𝜏𝜏𝑟𝑟
𝑟𝑟∈𝐴𝐴𝑡𝑡

∙ 𝑓𝑓𝑟𝑟 + 𝛼𝛼 ∙ � 𝒮𝒮𝑟𝑟 ∙ 𝑓𝑓𝑟𝑟
𝑟𝑟∈𝐴𝐴𝑡𝑡

+ � 𝜇𝜇𝑟𝑟 ∙ 𝒮𝒮𝑟𝑟
𝑟𝑟∈𝐴𝐴𝑡𝑡

�  (35) 
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𝜇𝜇𝑟𝑟 ≤ 𝛽𝛽 ∀𝑏𝑏 ∈ 𝐴𝐴𝑡𝑡 (36) 

𝜇𝜇𝑟𝑟 ≥ 𝛽𝛽 −𝑀𝑀(1 − 𝑓𝑓𝑟𝑟) ∀𝑏𝑏 ∈ 𝐴𝐴𝑡𝑡 (37) 

𝜇𝜇𝑟𝑟 ≥ 0 ∀𝑏𝑏 ∈ 𝐴𝐴𝑡𝑡 (38) 

𝜇𝜇𝑟𝑟 ≤ 𝑀𝑀 ∙ 𝑓𝑓𝑟𝑟 ∀𝑏𝑏 ∈ 𝐴𝐴𝑡𝑡 (39) 

TDLCPs for ICEVs 

For ICEVs, the generalized travel cost consists of travel time only. The travel time 

on each link in each time period is obtained from AIMSUN. Then, the decreasing order of 

time (DOT) algorithm (Chabini, 1998) is implemented to compute the time-dependent 

shortest paths. These paths are used to update the path set for ICEVs in each time period 

for each O-D pair. 

3.2.5 Path flow update process 

After the TDLCPs are computed in an iteration, they are appended to their 

corresponding path set and path costs are updated for all paths in the set. The path sets for 

both vehicle classes for all O-D pairs for each time period are updated simultaneously using 

the modified Smith’s mechanism (Smith, 1984). 

Modified Smith’s mechanism 

The notations are used as follows: 

Sets:  
𝑊𝑊 Set of origin-destination (O-D) pairs; 
𝑃𝑃𝑤𝑤𝑡𝑡𝑚𝑚  Set of paths for vehicle class 𝑚𝑚 and O-D pair 𝑒𝑒 in time period 𝑡𝑡 

Indices:  
𝑒𝑒 O-D pair, 𝑒𝑒 ∈ 𝑊𝑊; 
𝑖𝑖, 𝑗𝑗 Indices for paths, 𝑖𝑖, 𝑗𝑗 ∈ 𝑃𝑃𝑤𝑤𝑡𝑡𝑚𝑚 ; 

Variables:  

𝐶𝐶𝑤𝑤𝑡𝑡𝑚𝑚 (𝑖𝑖) 
Generalized travel cost for vehicle class 𝑚𝑚 and O-D pair 𝑒𝑒 on path 𝑖𝑖 in 
time period 𝑡𝑡; 

∆𝐶𝐶𝑤𝑤𝑡𝑡𝑚𝑚 (𝑖𝑖, 𝑗𝑗) Generalized travel cost difference between path 𝑖𝑖 and path 𝑗𝑗 for vehicle 
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class 𝑚𝑚 and O-D pair 𝑒𝑒 in time period 𝑡𝑡; 

∆�̂�𝐶𝑤𝑤𝑡𝑡𝑚𝑚 (𝑖𝑖, 𝑗𝑗) 
Normalized cost difference between path 𝑖𝑖 and path 𝑗𝑗 for vehicle class 𝑚𝑚 
and O-D pair 𝑒𝑒 in time period 𝑡𝑡; 

𝑓𝑓𝑤𝑤𝑡𝑡𝑚𝑚(i) Flow on path 𝑖𝑖 for vehicle class 𝑚𝑚 and O-D pair 𝑒𝑒 in time period 𝑡𝑡; 

∆𝑓𝑓𝑤𝑤𝑡𝑡𝑚𝑚(i) 
Change in flow on path 𝑖𝑖 for vehicle class 𝑚𝑚 and O-D pair 𝑒𝑒 in time 
period 𝑡𝑡; 

𝑓𝑓∗𝑤𝑤𝑡𝑡
𝑚𝑚 (i) Updated flow on path 𝑖𝑖 for vehicle class 𝑚𝑚 and O-D pair 𝑒𝑒 in time period 

𝑡𝑡; 
 

Step 1: For each time period and each O-D pair, compute the difference in 

generalized cost between each path pair for each vehicle class: 

∆𝐶𝐶𝑤𝑤𝑡𝑡𝑚𝑚 (𝑖𝑖, 𝑗𝑗) = 𝐶𝐶𝑤𝑤𝑡𝑡𝑚𝑚 (𝑖𝑖) − 𝐶𝐶𝑤𝑤𝑡𝑡𝑚𝑚 (𝑗𝑗) ∀𝑚𝑚,𝑒𝑒, 𝑡𝑡, 𝑖𝑖, 𝑗𝑗 (40) 

Step 2: Normalize the generalized cost difference using the difference between the 

maximum and the minimum generalized cost for a vehicle class for each O-D pair and each 

time period: 

∆�̂�𝐶𝑤𝑤𝑡𝑡𝑚𝑚 (𝑖𝑖, 𝑗𝑗) =
∆𝐶𝐶𝑤𝑤𝑡𝑡𝑚𝑚 (𝑖𝑖, 𝑗𝑗)

max
𝑘𝑘∈𝑃𝑃𝑤𝑤𝑡𝑡

𝑚𝑚 (𝐶𝐶𝑤𝑤𝑡𝑡𝑚𝑚 (𝑘𝑘)) − min
𝑘𝑘∈𝑃𝑃𝑤𝑤𝑡𝑡

𝑚𝑚 (𝐶𝐶𝑤𝑤𝑡𝑡𝑚𝑚 (𝑘𝑘))  
 ∀𝑚𝑚,𝑒𝑒, 𝑡𝑡, 𝑖𝑖, 𝑗𝑗 (41) 

Step 3: Obtain the move direction by summing the inflows and outflows for each 

path as follows: 

∆𝑓𝑓𝑤𝑤𝑡𝑡𝑚𝑚(i) = � ∆�̂�𝐶𝑤𝑤𝑡𝑡𝑚𝑚 (𝑖𝑖, 𝑗𝑗) ∗ 𝑓𝑓𝑤𝑤𝑡𝑡𝑚𝑚(i)
𝑗𝑗,∆�̂�𝐶𝑤𝑤𝑡𝑡

𝑚𝑚 (𝑖𝑖,𝑗𝑗)≥0

+ � ∆�̂�𝐶𝑤𝑤𝑡𝑡𝑚𝑚 (𝑖𝑖, 𝑗𝑗) ∗ 𝑓𝑓𝑤𝑤𝑡𝑡𝑚𝑚(j)
𝑗𝑗,∆�̂�𝐶𝑤𝑤𝑡𝑡

𝑚𝑚 (𝑖𝑖,𝑗𝑗)<0

 
∀𝑚𝑚,𝑒𝑒, 𝑡𝑡, 𝑖𝑖 (42) 

Step 4: Simultaneously update the path flows for both vehicle class for all O-D 

pairs for all time periods using step size 𝛼𝛼. The step size 𝛼𝛼 is the inverse of the iteration 

number. Then, the equation for path flow update is as follows:  

𝑓𝑓∗𝑤𝑤𝑡𝑡
𝑚𝑚 (𝑖𝑖) = 𝑓𝑓𝑤𝑤𝑡𝑡𝑚𝑚(𝑖𝑖) + α ∗ ∆𝑓𝑓𝑤𝑤𝑡𝑡𝑚𝑚(𝑖𝑖) ∀𝑚𝑚,𝑒𝑒, 𝑡𝑡, 𝑖𝑖 (43) 
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The flow update mechanism presented heretofore is obtained through three 

important modifications to Smith’s flow update mechanism. First, it uses multiple vehicle 

classes and the temporal dimension to reflect flow propagation of BEVs and ICEVs along 

various links, unlike the static context of Smith’s mechanism where a path flow is 

considered to be present on all links of that path simultaneously. Second, it normalizes the 

cost difference (see Equation (41)) before determining the move direction of the flow 

update process, leading to improved convergence. Third, it updates the path flow vectors 

for both vehicle classes for all time periods for all O-D pairs simultaneously to eliminate 

order bias in the flow update process. 

3.3 Numerical experiments 

3.3.1 Experiment setup 

Figure 3 illustrates the network used for the study experiments. It consists of 35 

nodes, 68 links, 7 origins/destinations and 42 O-D pairs with non-zero demand. Origins 

and destinations are marked through A - G. The network has four types of links: freeway, 

two-lane arterial, one-lane arterial, and ramps. The arterials are connected to the freeway 

through 12 ramps at three interchanges.  

The experiments are conducted for a one-hour horizon of interest preceded by a 15-

minute warm-up period. Hence, the time horizon is divided into 75 time periods of 1 minute 

each. The simulation is allowed to run until all vehicles exit the network beyond the 75-

minute horizon. The base O-D demand for the time horizon is presented in Table 2. The 

demand for each time period is computed by multiplying the base O-D demand with the 

temporal demand distribution factors shown in Figure 4. The demand for the warm-up 

period is identical to that of the first time period, and the demand for the clearance period 

is zero. The demand for each vehicle class is determined by its market penetration. 

The value of travel time for both ICEVs and BEVs is assumed to be $20 per hour. 

In the numerical experiments, the energy related costs are captured by factoring the non-

monetary cost component through an increase in the coefficient value for the electricity 

consumption cost. The cost of electricity and the BEV range anxiety threshold are varied 
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to perform sensitivity analysis. The effect of the BEV market penetration on network 

performance is also analyzed. 

 
Figure 3 Study Network 

 
Figure 4 Temporal Distribution of Demand Factors 

 

Table 2 Base Demand for the Time Horizon 
O/D A B C D E F G 

A 0 3000 160 250 70 70 100 
B 3000 0 375 100 125 50 300 
C 75 100 0 100 40 35 75 
D 75 50 100 0 50 25 100 
E 75 100 40 50 0 50 40 
F 75 40 40 25 40 0 40 
G 125 150 75 100 100 50 0 
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3.3.2 Effect of BEV market penetration 

Sensitivity analysis is performed for BEV market penetration under the scenario 

with no range anxiety. The electricity cost is assumed to be 50 cents/kWh as the fee to 

recharge a BEV at a commercial level 2 charging station may range between 30 cents/kWh 

to 80 cents/kWh (Blink, 2015). Figure 5 illustrates the effect of the BEV market penetration 

on the travel time distribution of BEVs and ICEVs. The average travel time of ICEVs is 

less than that of BEVs, implying that BEVs trade off their travel time for savings in energy 

consumption while ICEVs prefer routes with least travel time. Further, the system 

performance in terms of the total system travel time (TSTT) improves as the market 

penetration of BEVs increases. This is because as the BEV market penetration increases, 

more BEVs shift from freeway to arterials, thereby enhancing the performance of freeway 

as illustrated by Figure 6. Since freeway flows are typically larger than arterial flows, this 

shift tends to have a positive impact on overall network performance with the BEV market 

penetration increase. Hence, the preference of some BEVs to choose paths with higher 

travel time to save battery SOC consumption or recuperate battery charge moves the 

network towards system optimality in terms of TSTT. Though the total number of vehicles 

on freeway decreases with increase in BEV market penetration, the number of BEVs on 

freeway increases leading to the general trend of reduction in BEV average travel time. 

While it is expected that an increase in market penetration of BEVs should increase 

the average travel time of BEVs, the opposite trend is observed in Figure 5. This 

phenomenon can be explained as follows. As the total travel demand is fixed, an increase 

in market penetration implies that more BEVs from all O-D pairs shift to arterial routes 

except for the O-D pairs A-B and B-A (refer Figure 3) for which the freeway still remains 

the optimal route. Therefore, with an increase in market penetration of BEVs, the overall 

traffic volume on the freeway decreases. Thus, the average travel time of ICEVs decreases 

as most of them use the freeway route and its travel time decreases due to the decrease in 

volume. The average travel times of BEVs for O-D pairs A-B and B-A also decreases as 

most of them use the freeway route. Since, the travel demand for these two O-D pairs is 

significantly larger than for the other O-D pairs (refer Table 2), the weighted decrease in 
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travel time of BEVs of these O-D pairs outweighs the weighted increase in travel times of 

all other O-D pairs. Therefore, an overall decrease in system level average travel time is 

observed. 

The effect of market penetration on the average BEV battery SOC consumption is 

illustrated in Figure 7. The average battery SOC consumption increases with the increase 

in market penetration of BEVs because the number of ICEVs decreases, and hence more 

number of BEVs are present on freeway (see Figure 6). Due to the relatively higher speed 

on freeway compared to arterials coupled with the fact that higher speed increases energy 

consumption (see Section 3.2.3), the average battery SOC consumption increases as the 

number of BEVs on freeway increases with market penetration. 

 

 
Figure 5 Effect of BEV Market Penetration on Average Travel Time 
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Figure 6 Effect of BEV Market Penetration on Freeway Flows 

 
 

 
Figure 7 Effect of BEV Market Penetration on Battery SOC Consumption 
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3.3.3 Effect of electricity cost 

The effect of electricity cost on network performance is analyzed for the case with 

no range anxiety and equal market penetration of BEVs and ICEVs. Figure 8 shows the 

relationship between average travel time and electricity cost. The average travel time 

reduces for ICEVs with an increase in electricity cost, but has an overall negative effect on 

BEVs. At low electricity costs, the magnitude of positive effect for ICEVs is slightly higher 

than that for BEVs leading to an overall positive effect for the system. Akin to the 

discussion in Section 3.3.2, the increase in average travel time for BEVs and decrease for 

ICEVs can be explained by the shift in the flow of BEVs from freeway to arterials, as 

illustrated in Figure 9. At higher electricity costs, more BEVs shift from freeway to arterials 

as they have more incentive to save on energy consumption though these routes are longer 

in terms of travel time. This initially leads to a decrease in freeway travel time, thereby 

causing a decrease in average travel time for both BEVs and ICEVs. At the higher range 

of electricity costs, a large fraction of BEVs shift to arterials leading to high congestion. 

While this large shift by BEVs leads to further decrease in average travel time for ICEVs 

on freeway, the increase in travel time of BEVs on arterials more than negates benefits on 

freeway and causes system level increases in average travel time. As a result, average travel 

time of the system increases beyond a certain electricity cost. 

The effect of electricity cost on the average battery SOC consumption for BEVs is 

illustrated in Figure 10, which indicates that the average battery SOC consumption 

decreases with electricity cost increase. As the electricity cost increases, BEVs have more 

incentive to shift to routes with lesser battery SOC consumption, and hence more BEVs 

shift from freeway to arterials (as shown in Figure 9). Due to the relatively lower speed on 

arterials compared to freeway, the battery SOC consumption decreases (see Section 3.2.3). 
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Figure 8 Effect of Electricity Cost on Average Travel Time  

 
 

 
Figure 9 Effect of Electricity Cost on Freeway Flow 
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Figure 10 Effect of Electricity Cost on Battery SOC Consumption 

 

3.3.4 Effect of range anxiety 

To analyze the effect of range anxiety, it is classified into low range anxiety and 

high range anxiety. A driver with high range anxiety is more reluctant towards consuming 

battery SOC and feels anxious at a relatively higher level of remaining battery capacity 

compared to a driver with low range anxiety. The typical percentage of battery SOC 

consumption on the freeway route in the study network is around 75-80%. Hence, high 

range anxiety is assumed to be triggered when a BEV consumes 70% of the battery capacity 

(that is, 30% battery is remaining) and low range anxiety is assumed to be triggered when 

90% of the battery capacity (that is, 10% battery is remaining) is consumed. Figure 11 

illustrates the effect of range anxiety on travel time distribution of BEVs and ICEVs for an 

electricity cost of 50 cents/kWh and equal market penetration of ICEVs and BEVs. It 

indicates that high range anxiety has a negative impact on the network performance as 

BEVs experience higher travel times under high range anxiety compared to the case of low 

range anxiety. Vehicles with travel time of around 20 minutes in the network are typically 
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those for which destinations are relatively closer to their origins and mostly use arterial 

routes (see Figure 3). At high range anxiety, a significant number of BEVs use routes with 

higher travel time to reduce battery SOC consumption and hence shift from freeway to 

arterial routes. This causes severe congestion on the arterial routes and has a negative 

impact on the travel time of the vehicles on arterial routes, including vehicles whose trips 

partly involve arterial travel. Hence, all vehicles including ICEVs experience relatively 

higher travel times under high range anxiety, with BEVs performing slightly worse than 

ICEVs, on average. 

 
Figure 11 Effect of Range Anxiety on Travel Time Distribution 

 

3.3.5 Effect of congestion level 

The effect of congestion level on route selection by BEVs is analyzed for the case 

of equal market penetration, an electricity cost of 50 cents/kWh and without range anxiety. 

Congestion levels are classified as free flow, mild congestion, moderate congestion and 

high congestion based on average network speeds of about 50 mph, 31 mph, 21 mph and 

15 mph, respectively. Figure 12 shows the ratio of freeway flow to total flow for BEVs and 

ICEVs. The freeway flow for both ICEVs and BEVs decreases with increase in congestion 
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and the difference between freeway flow of ICEVs and BEVs decreases as well. With 

increase in congestion, the travel time on freeway route increases, and hence vehicles tend 

to move to alternative routes. Under free flow, BEVs save on electricity cost by selecting 

arterial routes as they have slower speeds. As congestion increases, the average speeds on 

both freeway and arterials decrease, reducing the incentive for BEVs to select arterial 

routes. Hence, as congestion increases, BEV behavior is closer to that of ICEVs in terms 

of route selection.  

 
Figure 12 Effect of Congestion Level on Freeway Flow 

 

Figure 13 shows the effect of traffic congestion on average battery SOC 

consumption. The average battery SOC consumption decreases up to the moderate 

congestion level and then increases slightly for the high traffic congestion level. This can 

be explained using the relationship between speed and energy consumption per mile for 

BEVs in Figure 1. The energy-efficiency for BEVs is lowest under free flow as the vehicles 

consistently drive at high speeds. As congestion increases, the speed decreases, and up to 

a certain point the average battery SOC consumption also decreases. Under high 

congestion, though the average network speed is about 15 mph, a good proportion of BEVs 
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travel at very low speeds (less than 10mph) for a major portion of their trip with low 

energy-efficiency, increasing their average battery SOC consumption.  

 
Figure 13 Effect of Congestion Level on Battery SOC Consumption 

 

3.3.6 Insights from numerical experiments 

The numerical experiments illustrate that, based on the generalized travel cost, BEV 

drivers in general tend to shift from the route with lower travel time (freeways) to routes 

with higher travel times (arterials) to reduce electricity costs and avoid range anxiety. This 

route choice aspect of some BEVs reduces freeway congestion and benefits other vehicles 

using the freeway, but consequently increases congestion on arterial routes. The overall 

network performance is the net effect of these contrasting phenomena. In a network such 

as the one considered for the study experiments, where freeway flow is significantly higher 

than that of arterials, BEVs will have a positive impact on the overall network performance. 

The route choice behavior tends to have a positive impact on overall system 

performance under both an increase in BEV market penetration and electricity cost. 

However, under very high BEV market penetration or at very high electricity cost, 

increased congestion on arterials more than negates the freeway benefits, leading to 
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reduced system performance. The average battery SOC consumption of BEVs increases 

with their market penetration as more BEVs are on freeway, while it decreases with 

increase in electricity cost as they have more incentive to shift to arterial routes. 

 As traffic congestion increases, average network speed decreases, thereby reducing 

incentive for BEVs to select alternative routes to save on energy consumption. This 

increases the relative importance of travel time in the BEV route choice behavior, reducing 

the difference in route choice behavior of BEVs and ICEVs. The average battery SOC 

consumption decreases with increase in congestion until the moderate traffic congestion 

level. Under the high congestion level, the average battery SOC consumption increases as 

the vehicles travel a major portion of their trip at very low speeds (less than 10 mph) which 

is not energy-efficient for BEVs. 

In summary, BEV route choice imperatives can synergistically lead to improved 

network performance under mixed traffic conditions for traffic networks with high levels 

of freeway flow and the availability route alternatives involving arterials. 
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CHAPTER 4. QUANTIFYING THE IMPACTS OF ELECTRIC VEHICLE TRAVEL 
PATTERNS ON BATTERY LIFESPAN 

The majority of EVs in the market use a Li-ion battery pack with an energy capacity 

of around 20 kWh. For example, the battery pack energy capacity for the Nissan leaf is 24 

kWh, Honda Fit EV is 20 kWh, Ford Focus Electric is 23 kWh, and Smart EV is 17.6 kWh. 

The energy capacity of a battery pack degrades with time and usage (Broussely et al., 2005; 

Guenther et al., 2013; Purewal et al., 2014; Vetter et al., 2005; Wang et al., 2014, 2011). 

As the energy capacity decreases, the vehicle range drops. An oft-stated common criterion 

is that the battery should be retired from the vehicle application if its capacity has depleted 

to 70-80% of its original capacity (Broussely et al., 2005; Saxena et al., 2015; Vetter et al., 

2005). The replacement of a battery pack poses significant cost to vehicle owners, though 

batteries can be resold and utilized for other applications such as renewable energy storage 

(Huang et al., 2012; Neubauer and Pesaran, 2011; Wood et al., 2011). Under this common 

battery replacement criteria, well-designed battery warranty strategies will play a crucial 

role in widespread EV adoption. However, among the current commercialized EVs 

available in the market, only Nissan Leaf has a battery capacity warranty against 

degradation from regular use. Under this warranty, Nissan will repair or replace a Leaf's 

battery within five years or 60,000 miles if it loses more than 30 percent of its energy 

capacity (DeMuro, 2013).  Therefore, quantifying EV battery lifespan for a large 

population of EVs is important for vehicle manufacturers, car owners, and battery 

researchers seeking to support practical applications. 

This study quantifies EV battery lifespan for a large population of EVs through a 

semi-empirical battery aging model and a microscopic traffic simulation model.  Realistic 

speed profiles are generated using microscopic traffic simulation model for the 

Indianapolis road transportation network. Five different temperature scenarios are 

examined. The results illustrate the impacts of temperature, total distance traveled, average 

speed and speed deviation on battery lifespan. This will provide insights for policymakers, 
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vehicle manufacturers and researchers to improve battery technology, and design regional 

strategies to promote EV adoption. 

4.1 Methodology 

A multi-paradigm modeling approach provides the flexibility to study the lifespan 

characteristics of a population of EVs. It enables different systems to be simulated with the 

most suitable modeling methods. Population behavior for a transportation network is 

addressed using building blocks, each of which represents a relevant set of phenomena. By 

building up theses blocks together, the whole system can be simulated and investigated in 

a holistic manner. This paper considers four different building blocks: a microscopic traffic 

network simulation model which provides realistic speed profiles of vehicles, an EV energy 

consumption model which provides power demand results for different speed profiles, a 

battery circuit model which converts power demands to current flows, and a semi-empirical 

battery degradation model which simulates battery lifespan based on current flows and 

temperature. 

Using the microscopic traffic network simulation model, vehicle trips from the 

National Household Travel Survey (NHTS) of 2009 data are matched with simulated speed 

profiles that reflect traffic conditions. The speed profile data is then fed into the EV energy 

consumption model to compute power profiles. The power profiles are used as inputs to 

the battery circuit model to obtain battery current data. In the end, the battery current data 

is fed into the battery aging model to simulate EV battery life. Figure 14 shows a simplified 

flowchart of the methodology framework. 

4.1.1 Household vehicle travel patterns 

For EVs, travel distance, travel speed, and vehicle acceleration and deceleration all 

impact battery lifespan. In this study, real-world household vehicle travel information is 

extracted from the NHTS data. The NHTS data provides daily trip profiles of 150,147 

random households across the United States (Federal Highway Administration, 2010). 

Among the 150,147 households, 4,350 are from the state of Indiana. This study extracts all 

of the 2,832 samples which are from Indianapolis urban and suburban areas to represent 
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Indianapolis households. Considering the range of EVs, only samples with daily travel 

distance less than or equal to 80 miles are selected, resulting in 2,306 (about 81% of 2,832) 

representative samples of household vehicles. The data includes car type, trip start and end 

time, trip distance, trip origin and destination, etc.; however, there is no information related 

to vehicles’ speed profiles. In order to get speed profiles, a microscopic traffic network 

simulation model is built for the city of Indianapolis. This model is used to generate 

realistic microscopic speed profiles with 1-sec time resolution. The speed profiles are then 

matched with each vehicle trip from the NHTS data based on trip characteristics to obtain 

the household vehicle travel patterns. 

 
Figure 14 Conceptual flowchart 
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Traffic simulation techniques are commonly used to capture the interactions 

between vehicles as well as between vehicles and infrastructure at a microscopic level. A 

microscopic simulation model employs various models such as car-following, lane-

changing, route choice, etc. to mimic real-world conditions. In this study, detailed speed 

profiles of vehicles are required to compute the battery lifespan of EVs. The traffic network 

simulation software AIMSUN is used to generate realistic drive-cycles of the vehicles at 

the microscopic level (Barceló and Casas, 2005; Casas et al., 2010). A detailed road 

network of Indianapolis is built in AIMSUN. The network contains all the freeways, most 

of the urban roads and some minor roads as shown in Figure 15. The traffic is simulated 

for a 24-hour period with discrete 15-minute interval origin-destination (O-D) demand 

matrices. The traffic demand level is calibrated based on the NHTS data for the state of 

Indiana. 

 
Figure 15 Indianapolis road network 
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In AIMSUN, vehicles are assigned to specific routes based on distance and road-

type. The trip data for each vehicle from the 2306 samples is obtained by matching to a 

specific trip in the network based on the trip departure time, trip distance, trip purpose, and 

freeway route indicator. The trip departure time and trip distance are the primary 

parameters used for matching. From these, the trip end time will be determined 

automatically as the speed profile is generated by the network. The trip purpose is used to 

assign route towards the downtown area or the sub-urban area, and the freeway route 

indicator is used to check whether the trip uses the freeway. The drive-cycle data from 

AIMSUN is gathered for specific vehicles that match the trip profiles from NHTS data 

based on the above criteria. The first plot in Figure 16 shows an example of the vehicle 

speed profile information. 

 

 
Figure 16 Speed profile of a sample vehicle and its corresponding battery power 

profile and current profile 
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4.1.2 Electric vehicle energy consumption model 

EV energy consumption depends significantly on the microscopic speed profile 

data. There are several models and simulation tools available that can simulate EV energy 

consumptions based on the speed profile data. For example, ADVISOR (Markel et al., 

2002; NREL, 2013) and Autonomie (Argonne National Laboratory, 2016) can simulate an 

EV’s power profile, MPGe (mile per gasoline equivalent), state of charge (SOC) profile, 

etc. for any given speed profile. These tools simulate the detailed performance of the power 

train/propulsion systems, and hence are computationally expensive. This study uses the 

model proposed by Van Haaren (2012) as presented in Section 3.2.3.  

4.1.3 Battery model 

Battery degradation rate is different at different C-rates, so the current profile is 

needed to simulate battery life. The C-rate is a measure of the rate at which a battery is 

being discharged. It is defined as the discharge current divided by the theoretical current 

draw under which the battery would deliver its nominal rated capacity in one hour. A 1C 

discharge rate would deliver the battery's rated capacity in 1 hour. A 2C discharge rate 

implies that it will discharge twice as fast (30 minutes). Thus, battery current profile is 

required to compute battery degradation. In this study, an equivalent-circuit model for Li-

ion battery is implemented as a Simulink block diagram to extract cell current profile using 

the power profile. The internal resistance and open-circuit voltage of the cell are 

implemented as 1-D lookup tables based on instantaneous battery state-of-charge. The 

equivalent-circuit model can be represented by equations (44)-(48). The definition of the 

parameters used are shown in Table 3. 

𝑉𝑉𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙 (𝑡𝑡) =  𝑉𝑉𝑂𝑂𝐶𝐶  (𝑡𝑡) − 𝐼𝐼𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙 (𝑡𝑡) ∗ 𝑅𝑅𝑖𝑖𝑐𝑐𝑡𝑡 (𝑡𝑡) (44) 

𝑃𝑃𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙(𝑡𝑡) =
 𝑃𝑃𝑟𝑟𝑎𝑎𝑡𝑡𝑡𝑡(𝑡𝑡)
𝑁𝑁𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙

= 𝑉𝑉𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙(𝑡𝑡) ∗ 𝐼𝐼𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙(𝑡𝑡) (45) 

𝑉𝑉𝑂𝑂𝐶𝐶(𝑡𝑡) =  𝑓𝑓�𝐸𝐸𝑆𝑆𝑂𝑂𝐶𝐶(𝑡𝑡)� (46) 
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𝑅𝑅𝑖𝑖𝑐𝑐𝑡𝑡(𝑡𝑡) = 𝑚𝑚�𝐸𝐸𝑆𝑆𝑂𝑂𝐶𝐶(𝑡𝑡)� (47) 

𝐸𝐸𝑆𝑆𝑂𝑂𝐶𝐶(𝑡𝑡) = 𝐸𝐸𝑆𝑆𝑂𝑂𝐶𝐶(0) +  
1

𝐵𝐵𝐴𝐴ℎ𝐶𝐶𝑎𝑎𝐶𝐶
∗  �

𝐼𝐼𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙(𝑡𝑡)
3600

𝑡𝑡

0
𝑑𝑑𝑡𝑡 (48) 

Table 3 Parameter definitions for equivalent-circuit battery model 
Parameter Definition  

𝑽𝑽𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄(𝒕𝒕) Cell terminal voltage at time 𝒕𝒕 
𝑽𝑽𝑶𝑶𝑶𝑶(𝒕𝒕) Cell open-circuit voltage at time 𝒕𝒕 
𝑰𝑰𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄(𝒕𝒕) Cell current at time 𝒕𝒕 
𝑹𝑹𝒊𝒊𝒊𝒊𝒕𝒕(𝒕𝒕) Cell internal resistance at time 𝒕𝒕 
𝑷𝑷𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄(𝒕𝒕) Electrical power out of the cell at time 𝒕𝒕 
𝑷𝑷𝒃𝒃𝒃𝒃𝒕𝒕𝒕𝒕(𝒕𝒕) Electrical power out of the battery pack 
𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 Number of cells in the battery pack 
𝑬𝑬𝑺𝑺𝑶𝑶𝑶𝑶(𝒕𝒕) State-of-charge at time 𝒕𝒕 
𝒇𝒇�𝐄𝐄𝑺𝑺𝑶𝑶𝑶𝑶(𝒕𝒕)�,𝒈𝒈�𝑬𝑬𝑺𝑺𝑶𝑶𝑶𝑶(𝒕𝒕)�  1-D lookup tables as function of state-of-charge at time 𝒕𝒕 
𝑩𝑩𝑨𝑨𝑨𝑨𝑶𝑶𝒃𝒃𝑨𝑨 Nominal ampere-hour capacity of the cell 

 

4.1.4 Battery degradation model 

Battery degradation causes capacity loss and impedance growth during operation 

and is also a result of storage. Operational degradation is called cycle aging, and storage 

degradation is called calendar aging. Calendar aging happens regardless of whether the 

battery is operated or not. It is mainly caused by the Li-ion loss during SEI formation at 

the graphite anode, and is strongly affected by two parameters: time and temperature 

(Wang et al., 2014). Cycle aging only happens when the battery is operating and there is 

current flow. The total battery energy capacity loss is the summation of these two effects. 

This study uses a semi-empirical model developed by Wang et al. (2014) that 

includes three important experimental parameters: time, temperature, and discharge rate . 

They performed experiments for 1.5 Ah, 18650 cylindrical cells and created a test matrix 

to measure each cell. The cell has a LiMn1/3Ni1/3Co1/3 + LiMn2O4 (NCM+LMO) cathode 

and a graphite anode. They modeled both calendar aging and cycle aging using substantial 

experimental data. The cycle aging model is for a given constant C-rate. In reality, it is not 
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possible for an EV to operate at a constant battery C-rate as the speed of the vehicle and 

hence, the power drawn from the battery changes with time. According to their results, 

under most conditions, the predicted values are within ±5% capacity loss of the measured 

values.  The model is listed in equations (49)-(51).  

𝑄𝑄𝑙𝑙𝑐𝑐𝑟𝑟𝑟𝑟,𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑙𝑙 = 𝑄𝑄𝑙𝑙𝑐𝑐𝑟𝑟𝑟𝑟,𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑎𝑎 + 𝑄𝑄𝑙𝑙𝑐𝑐𝑟𝑟𝑟𝑟,𝑐𝑐𝑎𝑎𝑙𝑙𝑎𝑎𝑐𝑐𝑑𝑑𝑎𝑎𝑟𝑟 (49) 

𝑄𝑄𝑙𝑙𝑐𝑐𝑟𝑟𝑟𝑟,𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑎𝑎 = (𝑎𝑎𝑇𝑇2 + 𝑏𝑏𝑇𝑇 + 𝑐𝑐) ∙ 𝑒𝑒𝑥𝑥𝑝𝑝 [(𝑑𝑑𝑇𝑇 + 𝑒𝑒) ∙ 𝐼𝐼𝑟𝑟𝑎𝑎𝑡𝑡𝑎𝑎] ∙ 𝐴𝐴ℎ𝑡𝑡ℎ𝑟𝑟𝑐𝑐𝑟𝑟𝑟𝑟ℎ𝐶𝐶𝑟𝑟𝑡𝑡 (50) 

𝑄𝑄𝑙𝑙𝑐𝑐𝑟𝑟𝑟𝑟,𝑐𝑐𝑎𝑎𝑙𝑙𝑎𝑎𝑐𝑐𝑑𝑑𝑎𝑎𝑟𝑟 = 𝑓𝑓 ∙ 𝑡𝑡0.5 ∙ 𝑒𝑒𝑥𝑥𝑝𝑝 (
−𝐸𝐸𝑎𝑎
𝑅𝑅𝑇𝑇

) (51) 

Since the battery current and temperature changes with time, battery energy 

capacity loss caused by cycle aging and calendar aging are calculated every second. For 

each second, the current is assumed to be constant, and the instantaneous energy capacity 

loss 𝐷𝐷𝑄𝑄𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟,𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑐𝑐  can be expressed as the differential of 𝑄𝑄𝑙𝑙𝑐𝑐𝑟𝑟𝑟𝑟,𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑎𝑎 with time 𝑡𝑡. Similarly, at 

variable temperature, capacity loss results from calendar aging can be expressed as the 

differential of 𝑄𝑄𝑙𝑙𝑐𝑐𝑟𝑟𝑟𝑟,𝑐𝑐𝑎𝑎𝑙𝑙𝑎𝑎𝑐𝑐𝑑𝑑𝑎𝑎𝑟𝑟  with time 𝑡𝑡 . The total energy capacity loss of cycle aging 

𝑄𝑄�𝑙𝑙𝑐𝑐𝑟𝑟𝑟𝑟,𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑎𝑎  and calendar aging 𝑄𝑄�𝑙𝑙𝑐𝑐𝑟𝑟𝑟𝑟,𝑐𝑐𝑎𝑎𝑙𝑙𝑎𝑎𝑐𝑐𝑑𝑑𝑎𝑎𝑟𝑟  are computed by summing the respective 

losses for each second. Note that for constant temperature, 𝑄𝑄𝑙𝑙𝑐𝑐𝑟𝑟𝑟𝑟,𝑐𝑐𝑎𝑎𝑙𝑙𝑎𝑎𝑐𝑐𝑑𝑑𝑎𝑎𝑟𝑟 and 𝑄𝑄�𝑙𝑙𝑐𝑐𝑟𝑟𝑟𝑟,𝑐𝑐𝑎𝑎𝑙𝑙𝑎𝑎𝑐𝑐𝑑𝑑𝑎𝑎𝑟𝑟 

are identical. The total battery energy capacity loss 𝑄𝑄𝑙𝑙𝑐𝑐𝑟𝑟𝑟𝑟,𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑙𝑙 is the sum of cycle aging loss 

and calendar aging loss, which is updated every day until it is greater than 30%, criteria to 

retire battery from EV use. The equations (52)-(56) represents the model used in this study. 

The coefficient values and units are listed in Table 4. 

𝐷𝐷𝑄𝑄𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟,𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑐𝑐 = (𝑎𝑎𝑇𝑇2 + 𝑏𝑏𝑇𝑇 + 𝑐𝑐) ∙ 𝑒𝑒𝑥𝑥𝑝𝑝 [(𝑑𝑑𝑇𝑇 + 𝑒𝑒) ∙ 𝐼𝐼𝑟𝑟𝑎𝑎𝑡𝑡𝑎𝑎]
𝑑𝑑𝐴𝐴ℎ𝑡𝑡ℎ𝑟𝑟𝑐𝑐𝑟𝑟𝑟𝑟ℎ𝐶𝐶𝑟𝑟𝑡𝑡

𝑑𝑑𝑡𝑡
 (52) 

𝑄𝑄�𝑙𝑙𝑐𝑐𝑟𝑟𝑟𝑟,𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑎𝑎 = �𝐷𝐷𝑄𝑄𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟,𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑐𝑐 (53) 

𝐷𝐷𝑄𝑄𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟,𝑐𝑐𝑎𝑎𝑙𝑙𝑐𝑐𝑐𝑐𝑑𝑑𝑎𝑎𝑟𝑟 = 0.5𝑓𝑓 ∙ 𝑒𝑒𝑥𝑥𝑝𝑝 (−
𝐸𝐸𝑎𝑎
𝑅𝑅𝑇𝑇

) ∙ 𝑡𝑡−0.5 (54) 

𝑄𝑄�𝑙𝑙𝑐𝑐𝑟𝑟𝑟𝑟,𝑐𝑐𝑎𝑎𝑙𝑙𝑎𝑎𝑐𝑐𝑑𝑑𝑎𝑎𝑟𝑟 = �𝐷𝐷𝑄𝑄𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟,𝑐𝑐𝑎𝑎𝑙𝑙𝑐𝑐𝑐𝑐𝑑𝑑𝑎𝑎𝑟𝑟  (55) 

𝑄𝑄𝑙𝑙𝑐𝑐𝑟𝑟𝑟𝑟,𝑡𝑡𝑐𝑐𝑡𝑡𝑎𝑎𝑙𝑙 = 𝑄𝑄�𝑙𝑙𝑐𝑐𝑟𝑟𝑟𝑟,𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑎𝑎 + 𝑄𝑄�𝑙𝑙𝑐𝑐𝑟𝑟𝑟𝑟,𝑐𝑐𝑎𝑎𝑙𝑙𝑎𝑎𝑐𝑐𝑑𝑑𝑎𝑎𝑟𝑟 (56) 
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Table 4 Coefficient values and units of the battery degradation model 
Coefficient Value and unit Coefficient Value and unit 
𝒃𝒃 8.61E-6, 1/Ah-K2 𝑰𝑰𝒓𝒓𝒃𝒃𝒕𝒕𝒄𝒄 C-rate 
𝒃𝒃 -5.125E-3, 1/Ah-K 𝒕𝒕 Days 
𝒄𝒄 0.7629, 1/Ah 𝑬𝑬𝒃𝒃 24500, J/mole 
𝒅𝒅 -6.7E-3, 1/K-(C-rate) 𝑹𝑹 8.314, J/(mole K) 
𝒄𝒄 2.35, 1/(C-rate) 𝑻𝑻 Temperature (K) 
𝒇𝒇 14876, 1/day0.5   

 
4.1.5 Assumptions and simulation 

In this study, one type of EV, similar to Nissan Leaf with 24 kWh Li-ion battery, is 

assumed to be used by all of the households. The battery is composed of 44 modules in 

parallel, where each module has 96 cells in serial, and each cell is 1.5 Ah and 3.75 V. The 

cell has a NCM+LMO cathode and a graphite anode. Because a NCM+LMO composite 

cathode presents a good balance of both energy density and power density (Fergus, 2010; 

Smith et al., 2011; Wang et al., 2014), it is considered as a promising candidate for vehicle 

applications.   

The simulation of battery life in this study is based on the following assumptions. 

First, the battery is considered unusable in vehicle applications when it has depleted to 70% 

of its original energy storage capacity. Second, the degradation model is applied to the 

entire temperature range experienced in Indianapolis (monthly average temperature from -

2.2oC to 24.1oC). Wang et al. performed experiments at 4 temperatures: 10oC, 22oC, 34oC, 

46oC. This study assumes the model still applies at lower (but not extreme) temperatures. 

Third, this study assumes that EVs are only charged at home with a level 1 (120 V) or level 

2 (240 V) charger. Thus, the effects of home charging on battery energy capacity loss can 

be ignored as level 1 and level 2 charging are both relatively slow. A 24 kWh EV battery 

takes about 12-13 hours for a full charge on a level 1 charger, and 7-8 hours on a level 2 

charger (Morrow et al., 2008), which is equivalent to a 1/13 C-rate or 1/8 C-rate during 

charging. At such low C-rates, calendar aging is the dominant element that causes energy 

capacity loss. The energy capacity loss results from cycle aging at 1/8 C-rate at 20oC for 8 
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hours is: 0.00066%, while the capacity loss results from calendar aging at 20oC for first 8 

hours is 0.37% for a new battery, and 0.0056% for a one-year battery. Since capacity loss 

due to calendar aging, equation (51), is a non-linear function of time, the calendar aging 

rate decreases with time, and becomes almost linear after one year. Most household vehicle 

daily trips are within 30 miles, and the energy consumption is less than half of the battery 

energy capacity and thus, most home charging events are less than 4 hours. Therefore, it is 

safe to ignore cycle aging effects on battery energy capacity loss during home charging. 

Fourth, when the EV is in use, regeneration during braking has the same effects on battery 

energy capacity loss as discharging at the same C-rate. 

This study simulates 2306 household vehicle samples in Indianapolis. Each vehicle 

sample follows its unique travel pattern day by day. Five temperature scenarios are 

analyzed in this study: four constant temperature scenarios (10oC, 15oC, 20oC and 25oC) 

and one variable temperature scenario. The monthly average temperatures for Indianapolis 

are used in variable temperature scenario. Figure 17 shows the temperature profile of 

Indianapolis used in this study. 

 
Figure 17 Indianapolis monthly average temperature 
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4.2 Results and discussion 

The simulation results of EV battery lifespan for different temperature scenarios 

are presented and discussed in the following paragraphs. Each EV follows its unique speed 

profile every day. Some EVs may have up to 6 trips every day, while others may have only 

one trip per day. The impacts of temperature, vehicle travel patterns, and driving behavior 

are illustrated on battery life distribution to provide a holistic picture of battery lifespan for 

a large population of EVs. 

Temperature affects both calendar aging and cycle aging. Figure 18(a) shows the 

simulated battery life histogram at four constant temperatures. The results indicate that the 

EV battery lifespan is (8.58±1.80) years at 10oC, (7.33±0.73) years at 15oC, (5.73±0.19) 

years at 20oC, and (4.20±0.06) years at 25oC. The EV battery life decreases as temperature 

increases. At higher temperatures, the battery degrades faster than at lower temperatures. 

The variation of EV battery life also decreases as temperature increases. This is because at 

higher temperatures, calendar aging dominates cycle aging as all EVs are at the same 

environmental temperature, and hence, the effects of vehicle travel patterns and driving 

behavior diminishes. In reality, temperature will not be constant all year long. The average 

monthly temperature profile in Indianapolis is used to simulate the EV battery lifespan in 

the city of Indianapolis. The annual average temperature in Indianapolis is 11.7oC. The 

simulated EV battery lifespan is (7.54±1.68) years. Figure 18(b) shows the distribution of 

battery life in Indianapolis. Although the temperature profile of Indianapolis varies 

between -2.2oC to 24.1oC, the simulated result is similar to the scenario of 10oC, and lies 

between the 10oC and 15oC scenarios (refer Figure 18(c)). Therefore, considering 

consistent vehicle travel patterns throughout the year, the average annual temperature is 

reasonable to use as an estimate in computing degradation due to temperature effects. Table 

5 shows detailed percentile of battery lifespan and EV total travel distance for the five 

temperature scenarios. 
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Figure 18 Battery lifespan distribution at: (a) constant temperatures; (b) 

Indianapolis temperature; (c) cumulative frequency curves for all scenarios 
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Table 5 The percentile of battery lifespan and total travel distances for different 
temperature scenarios 

 
Indianapolis 10oC 15oC 20oC 25oC 

Value 
(years) 

Value 
(miles) 

Value 
(years) 

Value 
(miles) 

Value 
(years) 

Value 
(miles) 

Value 
(years) 

Value 
(miles) 

Value 
(years) 

Value 
(miles) 

0 0.30 1653 1.42 1845 3.01 1346 4.38 967 3.88 693 
5 4.88 7612 5.62 8557 5.98 6128 5.34 4368 4.08 3126 

10 5.15 14080 6.05 15937 6.23 11960 5.42 8676 4.11 6232 
15 5.67 20522 6.52 23167 6.49 17738 5.51 12966 4.13 9336 
20 5.96 24057 6.86 27517 6.66 21846 5.56 16210 4.15 11722 
25 6.24 28160 7.20 32299 6.83 26037 5.61 19341 4.17 13968 
30 6.57 33104 7.52 37529 6.98 29413 5.65 21909 4.18 15884 
35 6.84 37303 7.79 42370 7.09 34320 5.68 25692 4.19 18600 
40 7.03 41468 8.05 47277 7.21 39438 5.71 29845 4.20 21658 
45 7.33 45874 8.34 52302 7.32 44586 5.74 34051 4.21 24739 
50 7.57 50940 8.62 58141 7.44 49936 5.77 38548 4.22 28198 
55 7.83 55766 8.89 63756 7.54 55476 5.79 43793 4.22 32193 
60 8.04 59556 9.15 68126 7.63 60685 5.82 48672 4.23 35902 
65 8.39 63527 9.51 72704 7.75 66484 5.84 53664 4.24 39676 
70 8.57 68782 9.71 78730 7.82 72842 5.86 58531 4.24 43029 
75 8.88 74111 10.04 85170 7.93 80160 5.88 65792 4.25 48768 
80 9.23 79197 10.37 91204 8.03 88416 5.91 73454 4.26 54756 
85 9.44 85882 10.64 98854 8.11 97524 5.92 81784 4.26 60833 
90 9.65 94144 10.90 108763 8.18 111200 5.94 96430 4.27 73250 
95 10.29 107729 11.49 124828 8.34 131553 5.97 116933 4.28 89239 

100 10.68 146400 12.00 169360 8.46 177280 6.00 156720 4.28 119280 
 

In order to gain insights into the relationship between vehicle travel patterns and 

battery lifespan, the simulated battery life is plotted against the total travel distance before 

the battery is depleted to 70% of its original capacity. Figure 19(a) shows battery lifespan 

versus total travel distance at four constant temperatures. The results illustrate that, at lower 

temperatures the effect of total travel distance is greater than that at higher temperatures. It 

means that at higher temperatures, battery lifespan is less sensitive to total travel distance. 

The negative slope indicates that as the EV travels longer, the battery life becomes shorter. 

The width of the strip shows the variation of battery life resulting from driving behavior 

such as average speed and speed deviation. As temperature increases, the strip starts 
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Figure 19 Impact of vehicle travel patterns on battery lifespan at: (a) constant 

temperatures; (b) Indianapolis temperature. 
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shrinking to almost a line, which indicates that the impact of driving behavior at lower 

temperature is greater than that at higher temperature. Another interesting finding is that 

after a certain point, the strip becomes almost horizontal, parallel to the x-axis. The 

horizontal red line provides intuitive information of minimum battery life under regular 

conditions, which is consistent with Table 5. Figure 19(b) shows the battery life versus 

total travel distance in Indianapolis. The results indicate that the impact of driving behavior 

in Indianapolis is similar to that of constant 10oC, but the battery lifespan is less for similar 

total travel distance. The horizontal line intersects y-axis at about 4.8 years. 

The impacts of driving behavior on battery lifespan are illustrated in Figure 20. 

Battery degradation due to cycle aging decreases as the average speed increases and speed 

deviation decreases. The average vehicle speed is higher and speed deviation is lower in 

uncongested traffic conditions. Though power consumption and C-rate are higher at higher 

constant speeds, at variable speeds, the magnitude of power losses/gains due to change in 

kinetic energy dominate those of the power losses at constant speed. Due to interactions 

between average speed and speed deviation, the variation in cycle aging is large. 

 
Figure 20 Impact of driving behavior on cycle aging for Indianapolis. 
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK 

This chapter summarizes the research, highlights its findings, and proposes 

directions for future research. 

5.1 Summary 

This study proposes two frameworks integrating modeling approaches used in 

transportation and energy sectors. First, the differences between the route choice behaviors 

of BEVs and ICEVs in a mixed traffic context with the potential for BEV range anxiety 

are analyzed, and their implications for traffic network performance under equilibrium 

conditions are examined. A multi-class DUE model is formulated and a microscopic 

simulation-based solution procedure is proposed. The use of microscopic simulation as part 

of the solution procedure enhance the accuracy of BEV energy consumption computation. 

Consequently, it aids in realistically capturing the effect of traffic congestion on BEV route 

selection. The traffic network performance, in terms of travel time and energy 

consumption, is analyzed with respect to the network characteristics (such as market 

penetration and traffic congestion) and factors that affect BEV route choice (such as 

electricity cost and range anxiety threshold). Second, the impacts of temperature, vehicle 

travel patterns, and driving behavior on EV battery lifespan are investigated. A multi-

paradigm modeling framework integrated with microscopic traffic simulation model, EV 

energy consumption model, battery circuit model, and semi-empirical battery degradation 

model is developed. Realistic vehicle travel patterns are generated using real-world vehicle 

trips data from NHTS 2009 data, and simulated speed profiles for each trip using a 

microscopic traffic simulation model built for Indianapolis road network that reflect traffic 

conditions. An analytical EV energy consumption model and a semi-empirical battery 

degradation model are then employed to compute the battery lifespan under different 

temperature scenarios. 



60 
 

5.2 Major findings 

First, the numerical analysis presented in CHAPTER 3 provides useful insights 

related to BEV route choice behavior and its impact on network performance. As battery 

SOC consumption for BEVs is lower at slower speeds, they can reduce their energy 

consumption by traveling on routes with slower speeds. Moreover, the RBS system 

equipped in BEVs reduces the rate of energy dissipation in stop-and-go traffic conditions 

and makes it more economical for them in terms of battery SOC consumption. The results 

from the numerical experiments indicate that BEVs choose routes with slower speeds, 

typically arterial routes, to reduce their battery SOC consumption and avoid range anxiety. 

Such potential unconventional route choice behavior by BEVs based on the generalized 

travel cost can decrease traffic congestion on routes with higher free flow speeds while 

increasing traffic congestion on routes with lower free flow speeds. This can lead to the 

improvement of traffic network performance and move the traffic network towards system 

optimal conditions in terms of travel time. Furthermore, with an increase in traffic 

congestion, BEV route choice behavior becomes similar to that of ICEVs as speeds in the 

network decrease, thereby reducing BEV incentive to switch routes to save on energy 

consumption. These insights can aid traffic operators to devise control strategies in the 

emerging mixed traffic stream, and policymakers to determine an optimal trajectory for 

promoting electric vehicles. Further, the insights related to energy consumption can aid 

energy operators to plan for infrastructure investments to support the increasing market 

penetration of electric vehicles. 

Second, the multi-paradigm modeling framework presented in CHAPTER 4 is used 

to quantify the impacts of temperature, vehicle travel patterns, and driving behavior on EV 

battery lifespan that provide useful information for vehicle owners, policymakers and 

vehicle manufacturers. The results indicate that temperature has a substantial impact on 

battery lifespan, and can overshadow the impacts of vehicle travel patterns and driving 

behavior at high temperatures. The study insights aid vehicle owners to assess the lifetime 

cost of EV ownership, including maintenance cost, insurance cost and battery resale value, 
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based on their travel needs and geographic location. Since temperature has a significant 

impact on battery degradation, policymakers and vehicle manufacturers should consider 

regional temperature conditions while designing strategies like tax credits, battery 

warranty, etc., to promote EV adoption. Since the impacts of vehicle travel patterns and 

driving behavior are considerable at lower temperatures, these need to be factored in 

warranty strategies for colder regions. Vehicle manufacturers should factor the 

environmental conditions in which the battery will be used, as also vehicle travel patterns 

and consumer driving behaviors.  

5.3 Future research directions 

Future research should focus on developing optimal control strategies to enhance 

the network performance using the microscopic simulation-based solution procedure for 

the MCDUE model presented in this study. Also, statistical models based on real-world 

survey data should be developed to better understand the route choice preferences of EV 

drivers. Furthermore, the data presented in this study provides a realistic foundation for 

future work to study the dynamics of EV battery market, and provides insights for battery 

studies that will impact real-world battery lifespan. Future research should also target 

improving battery lifespan, and considering regional temperature profiles, vehicle travel 

patterns and EV driving behaviors. 

  



62 
 

REFERENCES 

Adler, J.D., Mirchandani, P.B., 2014. Online routing and battery reservations for electric 

vehicles with swappable batteries. Transportation Research Part B: Methodological 

70, 285–302. 

Adler, J.D., Mirchandani, P.B., Xue, G., Xia, M., 2014. The electric vehicle shortest-walk 

problem with battery exchanges. Networks and Spatial Economics 1–19. 

Argonne National Laboratory, 2016. Autonomie [WWW Document]. URL 

http://www.autonomie.net (accessed 1.30.16). 

Artmeier, A., Haselmayr, J., Leucker, M., Sachenbacher, M., 2010. The shortest path 

problem revisited: Optimal routing for electric vehicles, in: KI 2010: Advances in 

Artificial Intelligence. Springer, pp. 309–316. 

Astarita, V., 1996. A continuous time link model for dynamic network loading based on 

travel time function, in: Lesort, J.-B. (Ed.), Proceedings of the 13th International 

Symposium on Transportation and Traffic Theory. Pergamori, Oxford, pp. 79–102. 

Aurbach, D., Zinigrad, E., Cohen, Y., Teller, H., 2002. A short review of failure 

mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte 

solutions. Solid State Ionics 148, 405–416. doi:10.1016/S0167-2738(02)00080-2 

Ban, X.J., Liu, H.X., Ferris, M.C., Ran, B., 2008. A link-node complementarity model and 

solution algorithm for dynamic user equilibria with exact flow propagations. 

Transportation Research Part B: Methodological 42, 823–842. 

Barceló, J., Casas, J., 2005. Dynamic network simulation with AIMSUN, in: Simulation 

Approaches in Transportation Analysis. Springer, pp. 57–98. 

Becker, T.A., Sidhu, I., Tenderich, B., 2009. Electric vehicles in the United States: a new 

model with forecasts to 2030. Center for Entrepreneurship & Technology (CET). 

Technical Brief. 

Blink, 2015. Car Charging Group, Inc. [ONLINE] Available at: 

http://www.blinknetwork.com. 



63 
 

Botsford, C., Szczepanek, A., 2009. Fast charging vs. slow charging: Pros and cons for the 

new age of electric vehicles, in: EVS24 International Battery, Hybrid Fuel Cell 

Electric Vehicle Symposium. 

Broussely, M., Biensan, P., Bonhomme, F., Blanchard, P., Herreyre, S., Nechev, K., 

Staniewicz, R.J., 2005. Main aging mechanisms in Li ion batteries. Journal of Power 

Sources 146, 90–96. doi:10.1016/j.jpowsour.2005.03.172 

Broussely, M., Herreyre, S., Biensan, P., Kasztejna, P., Nechev, K., Staniewicz, R.J., 2001. 

Aging mechanism in Li ion cells and calendar life predictions. Journal of Power 

Sources 97–98, 13–21. doi:10.1016/S0378-7753(01)00722-4 

Casas, J., Ferrer, J.L., Garcia, D., Perarnau, J., Torday, A., 2010. Traffic simulation with 

aimsun, in: Fundamentals of Traffic Simulation. Springer, pp. 173–232. 

Chabini, I., 1998. Discrete dynamic shortest path problems in transportation applications: 

Complexity and algorithms with optimal run time. Transportation Research Record: 

Journal of the Transportation Research Board 170–175. 

Chan, H.L., 2000. A new battery model for use with battery energy storage systems and 

electric vehicles power systems, in: Power Engineering Society Winter Meeting, 

2000. IEEE. pp. 470–475. 

Chen, T.D., Kockelman, K.M., Khan, M., others, 2013. The electric vehicle charging 

station location problem: a parking-based assignment method for Seattle, in: 

Transportation Research Board 92nd Annual Meeting. pp. 13–1254. 

Clarke, P., Muneer, T., Cullinane, K., 2010. Cutting vehicle emissions with regenerative 

braking. Transportation Research Part D: Transport and Environment 15, 160–167. 

doi:10.1016/j.trd.2009.11.002 

CPLEX, I.I., 2012. V12. 5: User’s manual for CPLEX. 

DeMuro, D., 2013. 2013 Nissan Leaf gets new battery warranty [WWW Document]. 

Autotrader. URL http://www.autotrader.com/car-news/2013-nissan-leaf-gets-new-

battery-warranty-201645 (accessed 7.12.14). 

EPRI, 2007. Environmental assessment of plug-in hybrid electric vehicles. Technical 

Report 1015325, Electric Power Research Institute 1, 1–38. 



64 
 

Federal Highway Administration, 2010. National Household Travel Survey of 2009, 

[ONLINE] Available at: http://nhts.ornl.gov. 

Fergus, J.W., 2010. Recent developments in cathode materials for lithium ion batteries. 

Journal of Power Sources 195, 939–954. doi:10.1016/j.jpowsour.2009.08.089 

Funk, K., Rabl, A., 1999. Electric versus conventional vehicles: social costs and benefits 

in France. Transportation Research Part D: Transport and Environment 4, 397–411. 

Guenther, C., Schott, B., Hennings, W., Waldowski, P., Danzer, M.A., 2013. Model-based 

investigation of electric vehicle battery aging by means of vehicle-to-grid scenario 

simulations. Journal of Power Sources 239, 604–610. 

doi:10.1016/j.jpowsour.2013.02.041 

He, F., Wu, D., Yin, Y., Guan, Y., 2013. Optimal deployment of public charging stations 

for plug-in hybrid electric vehicles. Transportation Research Part B: Methodological 

47, 87–101. 

He, F., Yin, Y., Lawphongpanich, S., 2014. Network equilibrium models with battery 

electric vehicles. Transportation Research Part B: Methodological 67, 306–319. 

Hess, A., Malandrino, F., Reinhardt, M.B., Casetti, C., Hummel, K.A., Barceló-Ordinas, 

J.M., 2012. Optimal deployment of charging stations for electric vehicular networks, 

in: Proceedings of the First Workshop on Urban Networking. pp. 1–6. 

Huang, S., Safiullah, H., Xiao, J., Hodge, B.M.S., Hoffman, R., Soller, J., Jones, D., 

Dininger, D., Tyner, W.E., Liu, A., Pekny, J.F., 2012. The effects of electric vehicles 

on residential households in the city of Indianapolis. Energy Policy 49, 442–455. 

doi:10.1016/j.enpol.2012.06.039 

Ichimori, T., Ishii, H., Nishida, T., 1983. Two routing problems with the limitation of fuel. 

Discrete Applied Mathematics 6, 85–89. 

Jiang, N., Xie, C., 2014. Computing and analyzing mixed equilibrium network flows with 

gasoline and electric vehicles. Computer-Aided Civil and Infrastructure Engineering 

29, 626–641. 

Jiang, N., Xie, C., Waller, S., 2012. Path-constrained traffic assignment: model and 

algorithm. Transportation Research Record: Journal of the Transportation Research 



65 
 

Board 25–33. 

Johnson, V.H., 2002. Battery performance models in ADVISOR. Journal of power sources 

110, 321–329. 

Kang, J.E., Recker, W.W., 2009. An activity-based assessment of the potential impacts of 

plug-in hybrid electric vehicles on energy and emissions using 1-day travel data. 

Transportation Research Part D: Transport and Environment 14, 541–556. 

doi:10.1016/j.trd.2009.07.012 

Kuby, M., Lim, S., 2005. The flow-refueling location problem for alternative-fuel vehicles. 

Socio-Economic Planning Sciences 39, 125–145. 

Lee, Y.J., Choi, H.Y., Ha, C.W., Yu, J.H., Hwang, M.J., Doh, C.H., Choi, J.H., 2015. Cycle 

life modeling and the capacity fading mechanisms in a 

graphite/LiNi<inf>0.6</inf>Co<inf>0.2</inf>Mn<inf>0.2</inf>O<inf>2</inf> cell. 

Journal of Applied Electrochemistry 45, 419–426. doi:10.1007/s10800-015-0811-6 

Lin, Z., Greene, D., 2011. Promoting the market for plug-in hybrid and battery electric 

vehicles. Transportation Research Record: Journal of the Transportation Research 

Board 2252, 49–56. doi:10.3141/2252-07 

Maia, R., Silva, M., Araújo, R., Nunes, U., 2011. Electric vehicle simulator for energy 

consumption studies in electric mobility systems, in: Integrated and Sustainable 

Transportation System (FISTS), 2011 IEEE Forum on. pp. 227–232. 

Mak, H.-Y., Rong, Y., Shen, Z.-J.M., 2013. Infrastructure planning for electric vehicles 

with battery swapping. Management Science 59, 1557–1575. 

Marano, V., Onori, S., Guezennec, Y., Rizzoni, G., Madella, N., 2009. Lithium-ion 

batteries life estimation for plug-in hybrid electric vehicles. Vehicle Power and 

Propulsion Conference, 2009. VPPC ’09. IEEE 536–543. 

doi:10.1109/VPPC.2009.5289803 

Markel, T., Brooker, A., Hendricks, T., Johnson, V., Kelly, K., Kramer, B., O’Keefe, M., 

Sprik, S., Wipke, K., 2002. ADVISOR: A systems analysis tool for advanced vehicle 

modeling. Journal of Power Sources 110, 255–266. doi:10.1016/S0378-

7753(02)00189-1 



66 
 

Miralinaghi, M., Keskin, B.B., Lou, Y., Roshandeh, A.M., 2016. Capacitated Refueling 

Station Location Problem with Traffic Deviations Over Multiple Time Periods. 

Networks and Spatial Economics 1–23. doi:10.1007/s11067-016-9320-3 

Miralinaghi, M., Lou, Y., Keskin, B.B., Zarrinmehr, A., Shabanpour, R., 2017. Refueling 

Station Location Problem with Traffic Deviation Considering Route Choice and 

Demand Uncertainty. International Journal of Hydrogen Energy 42, 3335–3351. 

doi:10.1016/j.ijhydene.2016.12.137 

Mock, P., Schmid, S.A., Friedrich, H.E., 2010. Market prospects of electric passenger 

vehicles. Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, 

Infrastructure and the Market. Elsevier. 

Mock, P., Yang, Z., 2014. Driving electrification: A global comparison of fiscal incentive 

policy for electric vehicles. The International Council on Clean Transportation 

(ICCT) 22, 2014. 

Morrow, K., Karner, D., Francfort, J., 2008. Plug-in hybrid electric vehicle charging 

infrastructure review. US Department of Energy-Vehicle Technologies Program 34. 

doi:10.2172/946853 

Neubauer, J., Brooker, A., Wood, E., 2012. Sensitivity of battery electric vehicle 

economics to drive patterns, vehicle range, and charge strategies. Journal of Power 

Sources 209, 269–277. doi:10.1016/j.jpowsour.2012.02.107 

Neubauer, J., Pesaran, A., 2011. The ability of battery second use strategies to impact plug-

in electric vehicle prices and serve utility energy storage applications. Journal of 

Power Sources 196, 10351–10358. doi:10.1016/j.jpowsour.2011.06.053 

Nie, Y.M., Ghamami, M., 2013. A corridor-centric approach to planning electric vehicle 

charging infrastructure. Transportation Research Part B: Methodological 57, 172–

190. 

NREL, 2013. ADVISOR Advanced Vehicle Simulator. [ONLINE] Available at: 

http://adv-vehicle-sim.sourceforge.net. 

Pearre, N.S., Kempton, W., Guensler, R.L., Elango, V. V., 2011. Electric vehicles: How 

much range is required for a day’s driving? Transportation Research Part C: Emerging 



67 
 

Technologies 19, 1171–1184. doi:10.1016/j.trc.2010.12.010 

Peeta, S., Ziliaskopoulos, A.K., 2001. Foundations of Dynamic Traffic Assignment: The 

Past, the Present and the Future. Networks and Spatial Economics 1, 233–265. 

doi:10.1023/A:1012827724856 

Plett, G.L., 2004. Extended Kalman filtering for battery management systems of LiPB-

based HEV battery packs: Part 3. State and parameter estimation. Journal of power 

sources 134, 277–292. 

Purewal, J., Wang, J., Graetz, J., Soukiazian, S., Tataria, H., Verbrugge, M.W., 2014. 

Degradation of lithium ion batteries employing graphite negatives and nickel-cobalt-

manganese oxide + spinel manganese oxide positives: Part 2, chemical-mechanical 

degradation model. Journal of Power Sources 272, 1154–1161. 

doi:10.1016/j.jpowsour.2014.07.028 

Rezvani, Z., Jansson, J., Bodin, J., 2015. Advances in consumer electric vehicle adoption 

research: A review and research agenda. Transportation Research Part D: Transport 

and Environment 34, 122–136. doi:10.1016/j.trd.2014.10.010 

Rezvanizaniani, S.M., Liu, Z., Chen, Y., Lee, J., 2014. Review and recent advances in 

battery health monitoring and prognostics technologies for electric vehicle (EV) 

safety and mobility. Journal of Power Sources 256, 110–124. 

Sachenbacher, M., Leucker, M., Artmeier, A., Haselmayr, J., 2011. Efficient energy-

optimal routing for electric vehicles, in: AAAI. 

Saxena, S., Le Floch, C., Macdonald, J., Moura, S., 2015. Quantifying EV battery end-of-

life through analysis of travel needs with vehicle powertrain models. Journal of Power 

Sources 282, 265–276. doi:10.1016/j.jpowsour.2015.01.072 

Schneider, M., Stenger, A., Goeke, D., 2014. The electric vehicle-routing problem with 

time windows and recharging stations. Transportation Science 48, 500–520. 

Senart, A., Kurth, S., Le Roux, G., 2010. Assessment framework of plug-in electric 

vehicles strategies, in: Smart Grid Communications (SmartGridComm), 2010 First 

IEEE International Conference on. pp. 155–160. 

Shepherd, S., Bonsall, P., Harrison, G., 2012. Factors affecting future demand for electric 



68 
 

vehicles: A model based study. Transport Policy 20, 62–74. 

Smith,  a. J., Burns, J.C., Xiong, D., Dahn, J.R., 2011. Interpreting high precision 

coulometry results on Li-ion cells. Journal of The Electrochemical Society 158, 

A1136. doi:10.1149/1.3625232 

Smith, M.J., 1984. The stability of a dynamic model of traffic assignment-an application 

of a method of Lyapunov. Transportation Science 18, 245–252. 

Storandt, S., 2012. Quick and energy-efficient routes: computing constrained shortest paths 

for electric vehicles, in: Proceedings of the 5th ACM SIGSPATIAL International 

Workshop on Computational Transportation Science. pp. 20–25. 

Straubel, J.B., 2008. Roadster efficiency and range [WWW Document]. Tesla Motors. 

URL https://www.teslamotors.com/blog/roadster-efficiency-and-range (accessed 

7.12.14). 

Tanaka, D., Ashida, T., Minami, S., 2008. An analytical method of EV velocity profile 

determination from the power consumption of electric vehicles, in: Vehicle Power and 

Propulsion Conference, 2008. VPPC’08. IEEE. pp. 1–3. 

Tate, E.D., Harpster, M.O., Savagian, P.J., 2008. The electrification of the automobile: 

from conventional hybrid, to plug-in hybrids, to extended-range electric vehicles. 

SAE international journal of passenger cars-electronic and electrical systems 1, 156–

166. 

Thomas, E. V., Bloom, I., Christophersen, J.P., Battaglia, V.S., 2008. Statistical 

methodology for predicting the life of lithium-ion cells via accelerated degradation 

testing. Journal of Power Sources 184, 312–317. doi:10.1016/j.jpowsour.2008.06.017 

U.S. EIA, 2012. Annual Energy Review 2011, U.S. Energy Information Administration. 

doi:/EIA-1384(2011) 

U.S. EPA, 2015. Inventory of U.S. greenhouse gas emissions and sinks: 1990-2013. U.S. 

Environmental Protection Agency 564. doi:EPA 430-R-13-001 

Upchurch, C., Kuby, M., Lim, S., 2009. A model for location of capacitated alternative-

fuel stations. Geographical Analysis 41, 85–106. 

USDOE, 2016. All-electric vehicles. [ONLINE] Available at: 



69 
 

http://www.fueleconomy.gov/feg/evtech.shtml. 

USDOE, 2014. Benefits and considerations of electricity as a vehicle fuel. [ONLINE] 

Available at: http://www.afdc.energy.gov/fuels/electricity_benefits.html. 

Van Haaren, R., 2012. Assessment of electric cars ’ range requirements and usage patterns 

based on driving behavior recorded in the National Household Travel Survey of 2009, 

Earth and Environmental Engineering Department, Columbia University, Fu 

Foundation School of Engineering and Applied Science, New York. 

Vetter, J., Novak, P., Wagner, M.R., Veit, C., Moller, K.C., Besenhard, J.O., Winter, M., 

Wohlfahrt-Mehrens, M., Vogler, C., Hammouche, A., 2005. Ageing mechanisms in 

lithium-ion batteries. Journal of Power Sources 147, 269–281. 

doi:10.1016/j.jpowsour.2005.01.006 

Wang, J., Liu, P., Hicks-Garner, J., Sherman, E., Soukiazian, S., Verbrugge, M., Tataria, 

H., Musser, J., Finamore, P., 2011. Cycle-life model for graphite-LiFePO4 cells. 

Journal of Power Sources 196, 3942–3948. doi:10.1016/j.jpowsour.2010.11.134 

Wang, J., Purewal, J., Liu, P., Hicks-Garner, J., Soukazian, S., Sherman, E., Sorenson, A., 

Vu, L., Tataria, H., Verbrugge, M.W., 2014. Degradation of lithium ion batteries 

employing graphite negatives and nickel-cobalt-manganese oxide + spinel manganese 

oxide positives: Part 1, aging mechanisms and life estimation. Journal of Power 

Sources 269, 937–948. 

Wang, M., 1999. Fuel-cycle greenhouse gas emissions impacts of alternative transportation 

fuels and advanced vehicle technologies. Transportation Research Record 1664, 9. 

doi:10.3141/1664-02 

Wang, Y.-W., Lin, C.-C., 2009. Locating road-vehicle refueling stations. Transportation 

Research Part E: Logistics and Transportation Review 45, 821–829. 

Weiller, C., 2011. Plug-in hybrid electric vehicle impacts on hourly electricity demand in 

the United States. Energy Policy 39, 3766–3778. doi:10.1016/j.enpol.2011.04.005 

Wipke, K.B., Cuddy, M.R., Burch, S.D., 1999. ADVISOR 2.1: A user-friendly advanced 

powertrain simulation using a combined backward/forward approach. Vehicular 

Technology, IEEE Transactions on 48, 1751–1761. 



70 
 

Wood, E., Alexander, M., Bradley, T.H., 2011. Investigation of battery end-of-life 

conditions for plug-in hybrid electric vehicles. Journal of Power Sources 196, 5147–

5154. doi:10.1016/j.jpowsour.2011.02.025 

Wright, R.B., Motloch, C.G., Belt, J.R., Christophersen, J.P., Ho, C.D., Richardson, R.A., 

Bloom, I., Jones, S.A., Battaglia, V.S., Henriksen, G.L., Unkelhaeuser, T., Ingersoll, 

D., Case, H.L., Rogers, S.A., Sutula, R.A., 2002. Calendar- and cycle-life studies of 

advanced technology development program generation 1 lithium-ion batteries. 

Journal of Power Sources 110, 445–470. doi:10.1016/S0378-7753(02)00210-0 

Wu, X., Freese, D., Cabrera, A., Kitch, W.A., 2015. Electric vehicles’ energy consumption 

measurement and estimation. Transportation Research Part D: Transport and 

Environment 34, 52–67. 

Xi, X., Sioshansi, R., Marano, V., 2013. Simulation-optimization model for location of a 

public electric vehicle charging infrastructure. Transportation Research Part D: 

Transport and Environment 22, 60–69. doi:10.1016/j.trd.2013.02.014 

Yao, E., Wang, M., Song, Y., Yang, Y., 2013. State of charge estimation based on 

microscopic driving parameters for electric vehicle’s battery. Mathematical Problems 

in Engineering 2013. 

Yu, A.S.O., Silva, L.L.C., Chu, C.L., Nascimento, P.T.S., Camargo Jr, A.S., 2011. Electric 

vehicles: struggles in creating a market, in: Technology Management in the Energy 

Smart World (PICMET), 2011 Proceedings of PICMET’11: pp. 1–13. 

 



Contacts 
For more information: 

Srinivas Peeta 
Principal Investigator 
Professor of Civil Engineering & Director 
NEXTRANS Center, Purdue University 
Ph: (765) 496 9726 
Fax: (765) 807 3123 
peeta@purdue.edu 
https://engineering.purdue.edu/~peeta/ 

NEXTRANS Center 
Purdue University - Discovery Park 
3000 Kent Ave. 
West Lafayette, IN 47906 
 
nextrans@purdue.edu 
(765) 496-9724 
 
www.purdue.edu/dp/nextrans 
 

 

mailto:nextrans@purdue.edu
http://www.purdue.edu/dp/nextrans

	107PUY2.1_Technical Summary
	Title
	Introduction
	Findings
	Recommendations

	107PUY2.1_Technical Report
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1. INTRODUCTION
	1.1 Background and motivation
	1.2 Research objectivess
	1.3 Organization of the research

	CHAPTER 2. CONCEPTUAL FOUNDATION AND LITERATURE REVIEW
	2.1 Electric vehicle characteristics
	2.2 Electric vehicle energy consumption models
	2.3 Electric vehicle energy-efficient routing
	2.4 Electric vehicle traffic assignment models
	2.5 Charging station facility location problem
	2.6 Electric vehicle battery degradation and life estimation models

	CHAPTER 3. ROUTING ASPECTS OF ELECTRIC VEHICLE DRIVERS AND THEIR EFFECTS ON NETWORK PERFORMANCE
	3.1 Multi-Class Dynamic User Equilibrium Model (MCDUE)
	3.1.1 Problem statement
	3.1.2 MCDUE formulation

	3.2 Solution procedure
	3.2.1 Solution procedure
	3.2.2 Role of microscopic simulation
	3.2.3 Electric vehicle energy consumption model
	3.2.4 Time-Dependent Least Cost Path (TDLCP) algorithm
	3.2.5 Path flow update process

	3.3 Numerical experiments
	3.3.1 Experiment setup
	3.3.2 Effect of BEV market penetration
	3.3.3 Effect of electricity cost
	3.3.4 Effect of range anxiety
	3.3.5 Effect of congestion level
	3.3.6 Insights from numerical experiments


	CHAPTER 4. QUANTIFYING THE IMPACTS OF ELECTRIC VEHICLE TRAVEL PATTERNS ON BATTERY LIFESPAN
	4.1 Methodology
	4.1.1 Household vehicle travel patterns
	4.1.2 Electric vehicle energy consumption model
	4.1.3 Battery model
	4.1.4 Battery degradation model
	4.1.5 Assumptions and simulation

	4.2 Results and discussion

	CHAPTER 5. CONCLUSIONS AND FUTURE WORK
	5.1 Summary
	5.2 Major findings
	5.3 Future research directions

	REFERENCES

	Contacts
	Contacts


